

Report on Supplementary Detailed Site Investigation (Contamination)

Proposed School Lot 100, DP1261496 Maitland Street, Muswellbrook NSW

> Prepared for Pacific Brook Christian School Ltd

> > Project 91601.03 July 2024

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	91601.03	Document No.	R.002.Rev8
Document title	Report on Supp	lementary Detailed Site I	Investigation (Contamination)
	Proposed Schoo	bl	
Site address	Lot 100, DP1261496 Maitland Street, Muswellbrook NSW		
Report prepared for	Pacific Brook Christian School Ltd		
File name	91601.03.R.002.Rev8. SDSI.docx		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Paulo Sebastian	Chris Bozinovski	12 May 2020
Revision 1	Paulo Sebastian	Chris Bozinovski	10 June 2020
Revision 2	Paulo Sebastian	Chris Bozinovski	25 August 2020
Revision 3	Paulo Sebastian	Chris Bozinovski	13 July 2021
Revision 4	Paulo Sebastian	Chris Bozinovski	23 September 2021
Revision 5	Paulo Sebastian	Chris Bozinovski	24 May 2024
Revision 6	Paulo Sebastian	Chris Bozinovski	11 June 2024
Revision 7	Paulo Sebastian	Chris Bozinovski	25 June 2024
Revision 8	Paulo Sebastian	Chris Bozinovski	23 July 2024

Distribution of copies

	66166		
Status	Electronic	Paper	Issued to
Revision 0	1	0	Chris Baldry, Pacific Brook Christian School Ltd
Revision 1	1	0	Chris Baldry, Pacific Brook Christian School Ltd
Revision 2	1	0	Chris Baldry, Pacific Brook Christian School Ltd
Revision 3	1	0	Chris Baldry, Pacific Brook Christian School Ltd
Revision 4	1	0	Chris Baldry, Pacific Brook Christian School Ltd
Revision 5	1	0	Chris Baldry, Pacific Brook Christian School Ltd
Revision 6	1	0	Chris Baldry, Pacific Brook Christian School Ltd
Revision 7	1	0	Chris Baldry, Pacific Brook Christian School Ltd
Revision 8	1	0	Chris Baldry, Pacific Brook Christian School Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	Separter	23 July 2024
Reviewer	C. Bozinlii	23 July 2024

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 15 Callistemon Close Warabrook NSW 2304 PO Box 324 Hunter Region Mail Centre NSW 2310 Phone (02) 4960 9600 Fax (02) 4960 9601

Table of Contents

Page

1.	Introduction1			
2.	Site D	Descriptio	on	2
3.	Geolo	bgy and I	Hydrogeology	3
4.	Background4			
	4.1	Prelimi	nary Contamination Assessment	4
	4.2	Detailed Site Investigation (Contamination)5		
	4.3	Prelimi	nary Auditor Advice	5
5.	Site C	Condition	۱	6
6.	Conc	eptual S	ite Model	7
7.	Field	Work		9
	7.1	Sampli	ng Rationale	9
	7.2	Method	ls	10
	7.3	Results	5	11
		7.3.1	Test Pits (assessment of asphaltic materials)	11
		7.3.2	Stockpiles	
		7.3.3	Building Surrounds	
	7.4	Contar	ninant Observations	13
8.	Data	Quality (Objectives	13
	8.1	Data Q	uality Objectives (DQOs)	13
	8.2	Sampli	ng and Analysis	18
		8.2.1	Soil Sample Collection, Decontamination and Preservation	18
		8.2.2	Field QA/QC	
		8.2.3	Laboratory QA/QC	19
9.	Labo	ratory Te	esting	19
	9.1	Analytic	cal Programme	19
	9.2	Analytic	cal Results	20
		9.2.1	Contamination Testing	20
10.	Site A	ssessm	ent Criteria (SAC)	20
	10.1	Introdu	ction	20
	10.2	Soils		21
		10.2.1	Health Investigation and Screening Levels	21
			Ecological Investigation Levels	
		10.2.3	Ecological Screening Levels	23

Douglas Partners Geotechnics | Environment | Groundwater

	10.2.4 Management Limits	24
	10.2.5 Asbestos in Soil	
	10.2.6 Waste Classification	25
11.	Assessment of Contamination	
	11.1 Asphalt access track	
	11.2 Building Surrounds	
	11.3 Stockpile Materials	
	11.4 Waste Classification	
12.	Comments / Recommendations	
	12.1 Updated Conceptual Site Model	
13.	Conclusions	
14.	References	32
15.	Limitations	

Appendix A:	About this Report
	Sampling Methods
	Soil Descriptions
	Symbols and Abbreviations
	Test Pit Logs (Pits 401 to 413, 106A and 501 to 503)
Appendix B:	Laboratory Reports
	Summary of Laboratory Results Tables B1 to B11
	Chromatographs
Appendix C:	Quality Control and Quality Assurance
	Chain of Custody Sheets (Field and Despatch)
	Sample Receipt
Appendix D:	Drawing 1 – Test Location Plan (Test Pits)
	Drawing 2 – Test Location plan (Surface and Stockpile Samples)
	Photoplates

Report on Supplementary Detailed Site Investigation (Contamination) Proposed School Lot 100, DP1261496 Maitland Street, Muswellbrook NSW

1. Introduction

This report presents the results of a supplementary detailed site investigation (DSI) for contamination undertaken in May 2020 at Lot 100, DP1261496 Maitland Street, Muswellbrook NSW. The investigation was commissioned by Chris Baldry on behalf of Pacific Brook Christian School Ltd and was undertaken with reference to Douglas Partners Pty Ltd (DP) proposal NCL200113 dated 3 April 2020.

It is understood that the proposed development on the site will comprise a school facility (primary and secondary school).

The site has undergone a preliminary contamination assessment (PCA) by JK Environments (JK) in April 2019 and a DSI by DP in July 2019. The DSI identified localised PAH impacts within the site associated with a buried asphaltic layer.

The objective of the supplementary assessment was to identify existing data gaps in relation to site contamination issues and to confirm site remediation requirements for the proposed school development.

It is noted that a geotechnical assessment was also conducted by DP and has been reported separately.

The supplementary assessment was conducted with reference to the Auditor approved Sampling, Analysis and Quality Plan (SAQP) (DP 2020) and generally comprised the following:

- Brief review of the previous investigations;
- Site inspection to assess current site conditions;
- Mark out and service locating at proposed test locations;
- Excavation of 16 test pits across the site to supplement the DSI;
- Inspection, surface and near surface sampling surrounding the ten existing / former buildings across the site;
- Inspection and sampling within the seven stockpiles across the site;
- Laboratory testing of selected soil samples for a range of potential organic and inorganic contaminants;
- Preparation of this reporting presenting the results of the assessment.

The investigation was undertaken with reference to NEPM (2013) and NSW EPA (2011), and the Auditor approved SAQP (DP 2020).

2. Site Description

The site is triangular in shape, with a northwest/southeast alignment and has an area of 2.432 ha. The site is bound by Muswellbrook Golf Course along the north eastern boundary, Maitland Street along the south western boundary and residential properties to the south eastern boundary (see below – Aerial image of site boundary). The site address is 72-74 Maitland Street and is legally described as Lot 100 in Deposited Plan (DP) 1261496 (see below – Site Context).

The site is generally level with a slight slope to a watercourse at the north west boundary. This watercourse flows northeast into the adjoining golf course and on to Muscle Creek via a series of dams on the golf course. Muscle Creek flows west into the Hunter River which at its closest is 1.3 km northwest of the site. Stormwater management on site is by overland flow.

72-74 Maitland Street was previously used for forestry plantation purposes and is mapped as Muswellbrook State Forest. The site is no longer used for this purpose and currently sits as an empty and underutilised site.

The main vehicular access to the site is from Maitland Street, as well as pedestrian access. Existing vehicular parking on site includes open air at grade parking spaces facing Maitland Street.

In terms of travel, Muswellbrook is approximately three (3) hours from Sydney, three hours (3) from Dubbo, two (2) hours from Tamworth and 90 minutes from Newcastle.

Aerial Image of Site Boundary

Site Context

At the time of the investigation the site was vacant and generally comprised several empty buildings in connection with the previous site use (plant nursery), gravel and asphalt paths, gravel garden beds and grass covering.

The site is bound by Maitland Street to the south-west, residential developments immediately to the south east with a service station located further to the south east (approximately 60 m), a golf course to the west and north.

The site is zoned R1 General Residential and is within Muswellbrook Shire Council.

Refer to Drawing 1 – Test Location Plan in Appendix D for site features.

Proposed Development

The proposed development is for the establishment of a new K-12 school (Pacific Brook Christian School) on the subject site. The proposed development will comprise site preparation and remediation, tree removal, construction of new school buildings, covered outdoor learning area, covered walkways, car parking, landscaping and associated works. The school will accommodate 140 students and 16 staff.

3. Geology and Hydrogeology

Reference to the 1:250 000 Geology geodatabase indicates that the majority of the site is underlain by Quaternary alluvium deposits which typically comprise gravel, sand, silt and clay and the north western portion is underlain by the Branxton Formation typically comprising conglomerate, sandstone, siltstone.

The regional groundwater flow regime is believed to be to the north and north-west towards Muscle Creek (located approximately 100 m north east of the site) and is considered to be the nearest sensitive receptor. The depth to the water table is likely to be <5 m based on site topography and geology. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.

Reference to the Acid Sulphate Soil Risk Map, prepared by the Department of Land and Water Conservation (DLWC) indicates the site is not mapped within an area known to comprise acid sulfate soils.

4. Background

4.1 Preliminary Contamination Assessment

A PCA was undertaken by JK in April 2019 (JK, 2019) and comprised a site history review, drilling of 20 boreholes, sampling and laboratory testing. The results of the investigation identified the following:

- Fill materials were identified in all bores from 0.1 m to 0.8 m depth which comprised a mixture of clayey silt, sandy gravel and gravel materials;
- Natural materials were encountered in all bores beneath the filling and typically comprised silty clay materials;
- Groundwater was not encountered during the previous investigation however minor seepage was encountered in the southern portion of the site at a depth of 0.8 m which may have been attributed to site infrastructure (ie site irrigation) as opposed to natural groundwater;
- It was noted that no odours or staining were observed in the filling or natural materials during the investigation;
- Results of laboratory testing indicated minor exceedances of PAHs and hydrocarbons above human health and ecological criteria in regard to the proposed landuse.

JK indicated that the environmental / ecological risks associated with the identified hydrocarbon concentrations were negligible.

JK concluded that "the site can be made suitable for the proposed primary school or secondary school development subject to further investigation, risk assessment, and (if required) remediation / validation".

The PCA (JK, 2019) also outlined the following data gaps:

 The sampling density was approximately 57% of the minimum sampling density recommended for hotspot identification, as outlined in the NSW EPA Sampling Design Guidelines (EPA, 1995) for a site area of approximately 25 000 m². A minimum of 15 additional sampling locations would be required to meet the guidelines for a Stage 2 detailed site investigation (DSI). JK recommended that further investigation is undertaken from test pits to provide a better visual assessment of the soil;

- Groundwater sampling was outside the scope of the preliminary assessment. The potential for onsite activities to have resulted in significant groundwater contamination is considered to be relatively low (based on the site observations and soil analysis results). However, an investigation will be required to assess the potential for contamination impacts associated with the service station to the south-east of the site;
- Chemical storage within the Hazchem sheds has the potential to leach through concrete slabs through historical leaks or spills. Additional sampling would be required around the edges of building slabs and within the building footprint to better characterise these areas; and
- The potential presence of hazardous building materials within the existing buildings.

4.2 Detailed Site Investigation (Contamination)

Douglas Partners Geotechnics | Environment | Groundwater

The DSI conducted by DP in July 2019 (DP, 2019a) (updated July 2021) identified the following:

- Presence of shallow filling within the majority of test pits / bores;
- Presence of ash within the upper fill materials in Pits 103, 107 and 111;
- Presence of asphalt lenses in Pit 106 exceeding landuse criteria;
- Fill materials generally met the criteria for classification as 'General Solid Waste' (GSW) based on total concentrations with reference to NSW EPA (2014). It is noted leachability testing was not conducted on the samples that exceeded GSW to confirm waste classification. Experience with similar materials indicate such contaminants generally have a low propensity to leach. Therefore, classification as GSW is considered likely, however should be confirmed with additional testing (refer to Section 9);
- Elevated PAH associated with asphalt lenses within the upper fill materials of the gravel path (Pit 106). This may be associated with a former asphalt seal layer within the path;
- Testing of localised fibro fragments encountered onsite and their immediately surrounding soils indicated the absence of asbestos containing materials (ACM);
- General absence of impacts from the nearby petrol station to groundwater quality along the southeast site boundary.

The extent of PAH impact had not been confirmed, however, it was likely to be associated with the gravel path within the site.

4.3 Preliminary Auditor Advice

The following data-gaps were identified by the Auditor in an email dated 23 January 2020 (Ramboll, 2020) following a brief inspection on 9 January 2020:

- 1. Existing site buildings:
 - Potential for soil contamination by lead, asbestos and organochlorine pesticides (OCPs) around the current buildings due to the weathering of lead paint and asbestos containing material (ACM) used in building construction and spraying of pesticides;

- Most buildings were in a dilapidated state with peeling paint and fragments of fibre board visible on the ground around the buildings;
- The hazardous material assessment report (DP, 2019b) identified lead paint and ACM in buildings 1, 5, 6, 8 and 9, hence assessment of the potential contamination of near surface soils around these buildings for lead and asbestos is required (refer to Appendix D plans for building IDs);
- The surface soils around all buildings should be assessed for OCPs.
- 2. Various soil stockpiles and earth mounds across the site:

Douglas Partners

- These stockpiles should be assessed for potential contamination (including ACM) to confirm suitability to remain on site or waste classification purposes for disposal.
- 3. Elevated PAH concentrations:
 - Determine the source of the elevated PAH concentrations reported in shallow soils in eastern portion of site (Pit 106) during previous investigation;
 - Delineate the extent of the contamination;
 - Assess remediation requirements for the intended landuse.
- 4. Soils beneath building footprints and underground concrete tanks (if removed):
 - Assessment of soil contamination following demolition of structures / concrete tank;
 - This could be completed as a visual assessment with targeted soil sampling if observations indicate any potential sources of contamination.

The Auditor recommended that an environmental consultant review the works to date and develop a sampling and analysis plan for additional investigations to address data gaps and determine the extent of remediation (if any) required.

In summary, the Auditor recommended additional investigations as follows:

- Additional testing for lead, asbestos and OCPs around the current buildings;
- Additional testing of various soil stockpiles and earth mounds across the site;
- Additional testing to delineate PAH impacts and remediation requirements (if any);
- Assessment of soils beneath building footprints and underground concrete tanks (following demolition).

The DP SAQP (2020) was prepared to address data-gaps and confirm site contamination conditions.

5. Site Condition

Site conditions observed during the field work for the current supplementary assessment on 7 April 2020 were generally consistent with the findings observed during the site inspection in July 2019.

It is understood that the site boundary extends approximately 1 m beyond the existing wire mesh fence along the eastern site boundary. This additional 1 m strip of land comprised the rear boundaries of several residential back yards. This area was inspected as part of the current assessment and was observed to comprise residential grass covered lawns, trace scrap metal and a metal sheet building as shown in the Figures 1 to 3 in Appendix D.

An inspection of the asphalt access track confirmed the sealed track surrounded the site structures in the central eastern portion of the site and linked in with the driveway entrance and exit in the central southern and south eastern portion of the site respectively. It is noted the access track appears to be buried in the vicinity north of Building 5 which was confirmed in the previous investigation by DP in 2019. Figures 4 to 7 in Appendix D show the general condition of the access track.

The stockpiles observed on site were also inspected and sampled, Figures 6 to 14 in Appendix D show the stockpiles 301, 301A and 302 to 307.

A detailed inspection of the existing building surrounds was also conducted and are summarised in Table 2 in Section 7. It is noted that six fibro fragments (potential asbestos containing materials (ACM) (generally in good condition) were observed at the surface in the vicinity of existing buildings. A summary of the location of the fibro materials observed and sampled are as follows:

- West of Building 5;
- South and east of Building 6;
- North of Building 8; and
- North of Building 9.

The typical conditions surrounding each building and the fibro fragments are shown in Figures 15 to 34 in Appendix D.

6. Conceptual Site Model

A Conceptual Site Model (CSM) has been prepared for the site with reference to the National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amendment Measure 2013) Schedule B2. The CSM identifies potential contaminant sources and contaminants of concern, contaminant release mechanisms, exposure pathways and potential receptors. The CSM is presented in Table 1 below.

Page 8 of 34

Table 1: Conceptual Site Model

Known and	Primary	Secondary Release	Potential	Contaminants	Exposure	Potential Receptors	
Potential Primary Sources	Release Mechanism	Mechanism	Impacted Media	of Concern	Pathway	Current	Future
Filling observed within the site & opportunistic dumping (stockpiles)	Placement/ storage of filling on-site or opportunistic dumping	Long-term leaching of contaminants via runoff, rain water infiltration / percolation	Soil, groundwater, surface water	TRH, BTEX, PAH, Metals, Pesticides, PCB, Asbestos	Dermal contact, inhalation (dust/vapours), ingestion		Students / pupils
Hazchem buildings	Spills and leaks, from storage/use of fuels, oils, paints, pesticides etc.	Long-term leaching of contaminants via runoff, rain water infiltration / percolation, through soil or cracks/joints in concrete	Soil, groundwater, surface water	TRH, BTEX, PAH, Metals, Pesticides, PCB,	Dermal contact, inhalation (dust/vapours), ingestion	Site workers, maintenance workers, consultants,	and staff, Site workers, members public, maintenance workers, construction
Former structures	Demolition of former structures	Long-term leaching of contaminants via runoff, rain water infiltration / percolation or disturbance via traffic/excavation	Soil, groundwater, surface water	Asbestos, PCB, Metals	Dermal contact, inhalation (dust), ingestion	trespassers, surface water bodies, groundwater	workers, consultants, trespassers, surface water bodies,
Buried asphalt lens (former path)	Placement on-site	Long-term leaching of contaminants via runoff, rain water infiltration / percolation	Soil, groundwater, surface water	TRH, PAH, Phenols	Dermal contact, ingestion		groundwater

7. Field Work

7.1 Sampling Rationale

The following sampling strategy was conducted for the supplementary investigation prior to the demolition of site structures (ie pre-demolition assessment):

• Existing Buildings:

- Visual inspection at the perimeter of all existing buildings to assess for the presence of hazardous building materials or other evidence of potential contamination (Buildings 1 to 10 – refer to Drawing 1 attached);
- o Collection of near surface soil samples using hand tools from the perimeter of each existing building (four per building one from each side);
- o Collection of potential ACM fragments where observed from the perimeter of existing buildings;
- o Analysis of all soil samples for OCP;
- o Analysis of soil samples for lead and asbestos from Buildings 1, 5, 6, 8 and 9;
- o Analysis of possible ACM fragments for asbestos identification.

• Soil Stockpiles and Earth Mounds across the Site:

- o Visual inspection and identification of soil stockpiles / mounds within the site to assess for evidence of potential contamination;
- o Excavation of test pits within mounds to assist with visual inspection and soil sample collection;
- o Collection of representative soil samples from stockpiles;
- Analysis of representative soil samples for TRH, BTEX, PAH, Phenol, metals, OCP, OPP, PCB, asbestos ID (minimum 1 per mound or 1/25m³);
- o Analysis of possible ACM fragments for asbestos identification;
- o The number of samples collected and tested will be assessed during field work in order to characterise the materials present (ie will depend on the condition and variability of materials observed);
- o Leachability (TCLP) testing on selected samples to confirm waste classification (ie materials exceeding landuse criteria).

• Elevated PAH Concentrations:

- o Excavation of test pits in the vicinity of TP106 and along the gravel path (ie potential source of PAH impact) to visibly assess the presence and possible extent of PAH impacts;
- o Collection of representative soil samples for PAH, TRH and Phenol analysis;
- o Review of Chromatographs and lab interpretation to assist with assessing the possible origin of PAH impacts;
- o TCLP testing on selected soil samples to confirm waste classification (where required);
- o Distilled water leachability (ASLP) testing on soil samples containing elevated PAH (where encountered).

As stated in the SAQP (DP, 2020), post-demolition surface inspections will be conducted over building footprints and the immediate surrounds to confirm site conditions following demolition activities. Demolition should be conducted by a licensed contractor in accordance with statutory and regulatory requirements and include clearance for hazardous building materials. A brief report will be prepared presenting the results of post-demolition inspections, sampling and testing, with comments on requirements (if any) for remediation.

A total of 17 test pits (Pits 401 to 413, 106A and 501 to 503) were excavated and sampled for the assessment; along with the excavation and sampling within seven stockpiles (301 to 307) across the site. The pits were located to address data gaps and assess the lateral extent of potential contamination across the site.

Surface and near surface soils were also sampled (B series samples) across 40 locations adjacent to the 10 existing buildings to assess possible impacts from hazardous building materials and pesticides where required.

Soil samples were selected for analysis on the basis of the likely presence of contamination, based on material type, visual or olfactory evidence of possible contamination (ie odour or staining), proximity to a known source of contamination, and whether generally representative of soil/fill conditions.

7.2 Methods

Field work was conducted on 7 April 2020 and comprised the following:

- Checking for underground services at proposed bore locations by a professional service locator prior to drilling;
- Excavation of 17 test pits to depths of 0.5 m to 3.0 m using a small excavator;
- Excavation of 40 shallow test pits at the perimeter of all existing buildings within the surface and near surface soils using hand tools;
- Logging of the subsurface profile, including visual and olfactory assessment of potential contaminants in soil;
- Screening of soil samples for volatile organic impact with a photo-ionisation detector (PID);

The test locations were set out by an environmental engineer from DP who also logged the subsurface profile in the pits and collected samples for identification and laboratory testing purposes. The approximate locations of the test pits and sampling locations are shown on Drawings 1 and 2, Appendix D.

Samples for environmental purposes were generally collected from the near surface, and at regular depth intervals or changes in strata within each pit. Soil samples were collected directly from within or test pits walls using stainless steel sampling equipment and / or disposable gloves. Care was taken to remove any extraneous material deposited on the sample.

The process of obtaining samples and their transportation, storage and delivery to laboratories for analysis was documented on DP standard Chain of Custody (C-O-C) forms. Copies of completed forms are contained in Appendix C.

7.3 Results

The subsurface conditions are presented in detail in the test pit logs, Appendix A. These should be read in conjunction with the general notes preceding them, which explain definitions of the classification methods and descriptive terms.

7.3.1 Test Pits (assessment of asphaltic materials)

FILLING / ASPHALT:	Asphalt wearing course approximately 0.05 m thick on the surface of majority of the test pits and asphaltic lenses at depth (between 0.15m and 0.3 m) in Pits 406, 407, 408, 409 and 106A.
FILLING:	Encountered in majority of the pits with the exception of Pits 501 to 503. The filling generally comprised a gravelly sand sub-base filling and silty sand filling to 0.2 m. Ash and coal reject gravel filling was encountered in all the pits with the exception of Pits 406, 407, 408, 413 and 501 to 503.
SILTY CLAY/CLAYEY SILT:	Encountered in all pits from 0.1 m to 0.5 m to termination depth.

The subsurface conditions encountered were generally commensurate with those found in JK (2019) and DP (2019).

Groundwater was not encountered during excavation of the test pits. It should be noted that groundwater levels are affected by factors such as climatic conditions, soil permeability and tidal influences and will therefore vary with time.

7.3.2 Stockpiles

The stockpiles generally comprised intermixed silty sand, clay and gravel. Stockpile 306 comprised some asphalt fragments, timber and organics, and Stockpiles 301 and 301A comprised abundant vegetation. Building materials such as brick, concrete, tile, ceramics, fibro fragments etc were not observed within any of the stockpiles investigated on site and therefore bulk asbestos sieving was not undertaken in the current supplementary assessment.

It is noted that Stockpile 305 comprised woodchip mulch and Stockpile 302 comprised two separate stockpiles of clean quarry gravel and mulch both comprising no soil component and therefore were not sampled or tested.

A brief description and an approximate volume for each stockpile is outlined in Table 2 below.

Photos of the stockpiles are shown in Appendix D attached.

Stockpile	Approximate Volume	Description
301	9 m ³	Generally comprising brown silty sand and gravel, trace clay and abundant vegetation
301A	9 m ³	Generally comprising brown silty sand and gravel, trace clay and abundant vegetation
302	3 m ³ and 1 m ³	Woodchip mulch and coarse quarry gravels (stockpiles not sampled)
303	11 m ³	Generally comprising brown silty sand and sub-rounded gravel with trace vegetation
304	3 m ³	Generally comprising brown silty sand and sub-rounded gravel
305	1.5 m ³	Woodchip mulch (not sampled)
306	14 m ³	Generally comprising intermixed silty sand and clay, trace asphalt fragments, timber and organics
307	25 m ³	Generally comprising brown sandy clay with fine to course grained sand and gravel and trace vegetation

Table 2: Summary of Stockpiles

7.3.3 Building Surrounds

Table 3 below summarises the condition of the surface and near surface soils surrounding each building. Photos of each building are shown attached in Appendix D.

Building No.	Soil Description
1 (Residential Dwelling)	Silty sand comprising fine to medium grained, brown, with silt, trace rootlets fine gravels, moist
2 (Timber Shed)	Silty sand comprising fine to medium grained, brown, with silt, trace fine gravels, rootlets, moist
3 (Galvanised Water Tank)	Gravelly sand comprising fine to medium grained, brown, with fine gravels, moist
Talik)	Clayey silt comprising low plasticity, brown
4 (Concrete Water Tank)	Clayey silt comprising low plasticity, brown
5 (Potting Shed)	Silty sand and gravelly sand comprising fine to medium grained, pale brown, with silt, moist (fine to medium gravels on surface) (possible filling)
6 (Front Office)	Silty sand comprising fine to medium grained, black, with silt, trace fine to medium gravels, moist (garden bed along southern face) (possible filling)
7 (Shade Cloth Greenhouse)	Silty sand comprising fine to medium grained, brown, with silt, fine to coarse gravels, moist. Trace plastic (possible filling)
8 (Rear Office)	Gravelly sand and silty sand comprising fine to medium grained, black and brown, with fine to medium gravels, silt, moist (possible filling)
9 (Hazchem and Machinery Shed)	Silty sand and gravelly sand comprising fine to medium grained, brown, with silt, trace fine to coarse gravels, moist (possible filling)
10 (Glasshouse)	Silty sand comprising fine to medium grained, brown, with silt, trace fine to medium gravels, roots, moist (possible filling)

Table 3: Summary of Surface Soil Conditions Surrounding Each Building

7.4 Contaminant Observations

Observations of potential contamination within the test pits are summarised in Table 3 below:

Potential Contamination Observation	Locations and Depths (m)
Filling ¹	All pits with the exception of Pits 501 to 503
Asphalt surface and subsurface asphalt lenses	All pits with the exception of Pits 501 to 503
Ash and coal reject	Pits 401, 402, 403, 404, 405, 409, 410, 411, 412 and 106A

Table 4: Potential Contamination Observations within Test Pits

Notes to Table 4:

1 - Potential presence of a range of contaminants (source unknown)

Observations of potential contamination within the stockpiled samples comprise possible imported filling with all the stockpiles and asphalt fragments within Stockpile 306.

Observations of potential contamination surrounding the existing buildings comprise the following:

- Imported filling surrounding majority of the buildings;
- Fibro fragments (possible ACM)at the surface adjacent to Buildings 5, 6, 8, 9 and 10; and
- Possible paint fragments surrounding Buildings 1, 5, and 8.

There were no obvious indications of gross contamination (ie staining / odours) within the investigated soils (ie no gross staining / odours). There were no indications of building rubble or potential hazardous building materials at the surface or within test pits associated with the identified stockpiled soils.

The results of PID screening on soil samples are shown on the test pit logs in Appendix A. PID screening generally suggested the absence of gross volatile hydrocarbon impact in all samples tested (ie <1 ppm).

8. Data Quality Objectives

8.1 Data Quality Objectives (DQOs)

The Supplementary DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process, which is provided in Appendix B, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

Step 1 - State the Problem

The proposed development involves the demolition of existing structures and construction of a new school facility. Previous investigations have identified potential sources of soil contamination associated with the site's history. The 'problem' to be addressed is that the extent and nature of potential contamination on site is not fully understood. The objective of the supplementary investigation is therefore to assess the nature and extent of contamination at the site and make recommendations for

remediation (where required) to render the site suitable for the proposed redevelopment works. Where required, options for the management or disposal of excess soils from site redevelopment will also be provided.

DP's project team included a Principal / Project Manager, field engineers and excavation subcontractor. The decision maker were the DP Principal / Project Manager.

Step 2 - Identify the Decision

Based on the site history, it is considered that the contaminants of concern are various organic and inorganic compounds impacting on soil (refer to the CSM in Section 6). As such, the analysis will focus on those contaminants relevant to the identified media.

The analytical data for soil will be compared to relevant SAC including HIL, HSL, EIL and ESL for an educational facility as per Tables 1A and 1B in Schedule B1, NEPC (2013).

The suitability of the site for the proposed development will be based on a comparison of the analytical results for all contaminants of concern to the adopted SAC. If necessary, results will also be compared to the 95% UCL of the mean concentrations (relevant to soil contamination under certain circumstances).

The following specific decisions will be made, as appropriate:

- What is the conceptual site model (ie sources, receptors, migration pathways, exposure)?
- Do the existing fill materials and/or natural soils pose a potential risk to identified receptors?
- Does the existing groundwater beneath the site pose a potential risk to identified receptors?
- Does the existing soil gas/soil vapour beneath the site pose a potential risk (toxic, explosion or asphyxiation) to identified receptors?
- Is the data sufficient to make a decision regarding the abovementioned risks, the compatibility of the site for the proposed development or are additional investigations required?
- Are there any off-site migration issues that need to be considered?
- What are the waste management requirements for excess soils associated with the development?
- Is the data sufficient to enable the preparation of a Remediation Action Plan (RAP) and/or Environmental Management Plan (EMP) should the data suggest these are required?

Step 3 - Identify the Inputs to the Decision

Inputs into the decisions are as follows:

- Collection and review of site history information including information regarding previous and current activities undertaken on the site and the surrounding areas;
- Review of previous investigations undertaken;
- Regional geology, topography, ASS risk mapping and hydrogeology;
- Soil samples will be collected at targeted locations and analysed for the relevant contaminants of concern;
- Screening for potential volatile organic compounds (ie soil vapour) will be conducted using a PID;

- The lithology of the site as described in the test pit logs and sample descriptions;
- If site conditions suggest additional contaminants of concern, e.g. if the condition of subsurface material encountered whilst drilling encounter particular odours, further analysis may be undertaken;
- Field and laboratory QA/QC data to assess the suitability of the environmental data for the assessment;
- All analysis undertaken at a NATA accredited laboratory; and
- The results will be compared with the SAC discussed below.

Step 4 - Define the Boundary of the Assessment

The study boundary is as shown on Drawing 1, Appendix D and described in Section 2 above.

Step 5 - Develop a Decision Rule

The information obtained during the assessment will be used to characterise the site in terms of contamination issues and risk to human health and/or the environment. The decision rules used in characterising the site will be as follows:

- Laboratory test results for fill/soil will be assessed individually or statistically, if considered appropriate, to determine the 95% UCL of the mean concentration for each analyte or analyte group (of like materials);
- Laboratory test results for targeted locations (and identified 'hot spots') will be assessed individually;
- The adopted SAC will be from NSW EPA endorsed guidelines;
- Where such criteria are not available, other recognised national or international standards will be used;
- The contaminant concentrations in fill / soil should meet the following criteria, or further investigation or remedial action is required if:
 - The concentration of the contaminant is more than 2.5 times the SAC. Any location more than 2.5 times the adopted site criteria is classified as a 'hotspot', requiring further assessment / management; and
 - o The calculated 95% UCL for a relevant area and discrete impacted fill/soil stratum (excluding any 'hotspot' concentrations) exceeds the adopted SAC;
 - o The standard deviation of the results is greater than 50% of the SAC;
- Further investigation, remediation and/or management will be recommended if the site is found to be contaminated or containing contamination 'hot spots';

Field and laboratory test results will be considered useable for the assessment after evaluation against the following data quality indicators (DQIs):

Page 16 of 34

Table 5: Data Quality Indicators

DQO	Frequency	Data Acceptance Criteria				
Completeness						
Field documentation correct	All samples	All samples				
Soil bore logs complete and correct	All samples	All samples				
Suitably qualified and experience sampler	All samples	All samples				
Appropriate lab methods and limits of reporting (LORs)	All samples	All samples				
Chain of custodies (COCs) completed appropriately	All samples	All samples				
Sample holding times complied with	All samples	All samples				
Proposed/critical locations sampled	-	Proposed/critical locations sampled				
Com	parability					
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All samples				
Experienced sampler	All samples	All samples				
Consistent analytical methods, laboratories and units	All samples	All samples				
•	entativeness					
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	All Samples				
Samples homogenous	All samples	All Samples				
Samples extracted and analysed within recommended holding times	All samples	-				
Pro	ecision					
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	30% RPD, then review RPDs >30% would be reviewed in relation to heterogeneity of sample and LOR				
Laboratory duplicates	1 per 20 samples	<20% RPD Result > 20 × LOR <50% RPD Result 10-20 × LOR No Limit when RPD Result <10 × LOR				
Accuracy						
Surrogate spikes	All organic samples	50-150%				
Matrix spikes	1 per 20 samples	70-130% (inorganics) 60-140% (organics)				
Laboratory control samples	1 per 20 samples	70-130% (inorganics) 60-140% (organics)				
Method blanks	1 per 20 samples	<lor< td=""></lor<>				

Step 6 - Specify Acceptable Limits on Decision Errors

Considering the future site use / development, decision errors for the respective contaminants of concern for fill / soil are:

- 1. Deciding that the sites fill / soil exceeds the SAC when they truly do not; and
- 2. Deciding that the sites fill / soils are within the SAC when they are truly not.

Decision errors for the proposed assessment will be minimised and measured by the following:

- Compare new data with available previous investigations to determine the possible range of the parameters of interest;
- The sampling regime will target key strata identified to account for site variability;
- Sample collection and handling techniques will be with reference to DPs Field Procedures Manual;
- Samples will be prepared and analysed by a NATA accredited laboratory with the acceptance limits for laboratory QA/QC parameters based on the laboratory reported acceptance limits and those stated in NEPC (2013);
- The analyte selection is based on the available site history, past site activities, site features and the findings of the previous investigations. The potential for contaminants other than those proposed to be analysed is currently considered to be low;
- The SAC will be adopted from established and EPA endorsed guidelines where available. The SAC have risk probabilities already incorporated;
- Only NATA accredited laboratories using NATA endorsed methods will be used to perform laboratory analysis. Where NATA endorsed methods are not used, the reasons will be stated. The effect of using non-NATA methods (if relevant) on the decision making process will be explained.

Step 7 - Optimise the Design for Obtaining Data

Sampling design and procedures that will be implemented to optimise data collection for achieving the DQOs included the following as stated in the Auditor approved SAQP (DP 2020):

- Only NATA accredited laboratories using NATA endorsed methods are used to perform laboratory analysis whenever possible;
- Targeted soil sampling (within access constraints) will generally be used to provide supplementary information at the site;
- To optimise the selection of soil samples for chemical analysis, samples collected will be screened using a calibrated PID allowing for site assessment and sample selection. In addition, additional soil samples will be collected but kept 'on hold' pending details of initial analysis and will be analysed if further delineation is required; and

Adequately experienced environmental scientists / engineers were chosen to conduct field work and sample analysis interpretation.

8.2 Sampling and Analysis

Soil sampling and analysis was undertaken in general accordance with DP Sampling Quality and Analysis Plan (SAQP) drafted by DP in April 2020 (DP, 2020). A brief summary of the sampling procedures are summarised below.

8.2.1 Soil Sample Collection, Decontamination and Preservation

Soil samples for contamination testing were collected with reference to environmental sampling protocols and C-O-C documentation.

Soil samples for contamination assessment were collected at regular depth intervals and/or changes in strata based on field observations, including from the near surface, and upon possible signs of contamination such as odours or staining. Soil samples were collected directly from test pits walls using stainless steel sampling equipment and / or disposable gloves. Care was taken to remove any extraneous material deposited on the sample.

All sampling data was recorded on DP chain of custody (C-O-C) sheets. The general sampling procedure comprised:

- Decontamination of sampling equipment using a 3% solution of phosphate free detergent (Decon 90) and tap water prior to collecting each sample;
- The use of new disposable gloves for each sampling event;
- Transfer of samples into laboratory-prepared jars and capping immediately;
- Collection of replicate soil samples in zip-lock plastic bags at each depth for screening by PID;
- Collection of replicate and triplicate samples for QA/QC purposes;
- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth;
- Placement of the sample containers and replicate sample bags into a cooled, insulated and sealed container for transport to the laboratory.

The process of obtaining samples and their transportation, storage and delivery to laboratories for analysis was documented on a DP standard C-O-C. Copies of completed forms are provided in Appendix C.

Replicate samples for each soil sample were screened for the presence of VOCs, using a MiniRAE LITE PID or MiniRAE 3000 with a 10.6 eV lamp, calibrated to 100 ppm Isobutylene.

8.2.2 Field QA/QC

DP's QA/QC procedures were adopted throughout the field sampling programme.

Regular collection of duplicate/replicate samples will be undertaken during field sampling. Accuracy and precision will be assessed through the analysis of 10% field duplicate / replicate samples.

Appropriate procedures will be undertaken to minimise the potential for cross contamination. Field QA/QC procedures will include the following:

- Standard operating procedures are followed;
- Site safety and environmental plans are developed prior to commencement of works;
- Duplicate or replicate field samples are collected and analysed;
- Samples are stored under secure, temperature-controlled conditions;
- Chain of custody documentation is employed for the handling, transport and delivery of samples to the selected laboratory.

8.2.3 Laboratory QA/QC

The NATA accredited chemical laboratory undertook in-house QA/QC procedures involving the routine testing of:

- Reagent blanks;
- Spike recovery analysis;
- Intra laboratory duplicates and inter laboratory triplicate analysis;
- Analysis of control standards;
- Calibration standards and blanks; and
- Statistical analysis of QC data.

9. Laboratory Testing

9.1 Analytical Programme

Laboratory testing for the supplementary detailed investigation was undertaken by Envirolab Services Pty Ltd and ALS Environmental, both NATA registered laboratory. Analytical methods used are shown in the laboratory sheets in Appendix B.

A total of 79 soil samples (including 11 QA/QC soil samples) and six fibro material sample were selected to provide an assessment of soil / fill conditions. The samples were selected to target the previously identified contaminants (ie PAHs and hydrocarbons) while also assessing the broader suite of potential contaminants identified in the SAQP. The fill / soil samples were analysed for a range of potential contaminants as presented below:

Access Track

- Total Recoverable Hydrocarbons (TRH);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Total Phenols.

Existing Building Structures

- Metals: Lead (Pb);
- Organochlorine (OC) and Organophosphate (OP) Pesticides;
- Asbestos Identification (fibro fragments and 500ml soil samples).

Stockpiles

- Metals: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Iron (Fe), Lead (Pb); Mercury (Hg), Manganese (Mn), Nickel (Ni), Zinc (Zn); Aluminium (Al) and Selenium (Se);
- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethyl Benzene, Xylene (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Polychlorinated Biphenyls (PCBs);
- Organochlorine (OC) and Organophosphate (OP) Pesticides;
- Asbestos Identification (500ml soil samples).

QA/QC comprised analysis of seven replicate soil samples and four triplicate samples. The results of the QA/QC are summarised in Appendix C.

The laboratory report sheets are provided in Appendix B.

9.2 Analytical Results

9.2.1 Contamination Testing

The results of chemical analysis undertaken on soil samples are summarised in Tables B1 to B11 in Appendix B.

10. Site Assessment Criteria (SAC)

10.1 Introduction

It is understood that the proposed development at Lot 100 Maitland Street, Muswellbrook will comprise a primary or secondary school facility.

The Site Assessment Criteria (SAC) applied in the current investigation is informed by the CSM which identified human and ecological receptors to potential contamination on the site (refer to Section 6). Analytical results were assessed (as a Tier 1 assessment) against the SAC comprising the investigation and screening levels of Schedule B1, *National Environment Protection (Assessment of Site Contamination) Measure* 1999, as amended 2013 (NEPC, 2013). The NEPC guidelines are endorsed by the NSW EPA under the CLM Act 1997. Petroleum based health screening levels for direct contact have been adopted from the *Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report No.10 Health screening levels for petroleum hydrocarbons in soil and groundwater (2011) as referenced by NEPC (2013).*

The investigation and screening levels are applicable to generic land use settings and include consideration of, where relevant, the soil type and the depth of contamination. The investigation and screening levels are not intended to be used as clean up levels. Rather, they establish concentrations above which further appropriate investigation (e.g. Tier 2 assessment) should be undertaken. They are intentionally conservative and are based on a reasonable worst-case scenario.

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic low density residential land use which also applies to primary schools.

10.2 Soils

10.2.1 Health Investigation and Screening Levels

The generic HIL and HSL for residential land use (HIL A and HSL A) are considered to be appropriate for the assessment of contamination at the site. The adopted soil HIL and HSL for the potential contaminants of concern are presented in Table 6.

	Contaminants	HIL- A	HSL- A ³
	Arsenic	100	NC
	Cadmium	20	NC
	Chromium (VI)	100	NC
	Copper	6000	NC
Metals	Lead	300	NC
	Manganese	3800	NC
	Mercury (inorganic)	40	NC
	Nickel	400	NC
	Zinc	7400	NC
PAH	Benzo(a)pyrene TEQ ¹	3	NC
ГАП	Naphthalene	NC	3
	Total PAH	300	NC
	C6 – C10 (less BTEX) [F1]	NC	45
TRH	>C10-C16 (less Naphthalene) [F2]	NC	110
ТИП	>C16-C34 [F3]	NC	NC
	>C34-C40 [F4]	NC	NC
	Benzene	NC	0.5
BTEX	Toluene	NC	160
BIEX	Ethylbenzene	NC	55
	Xylenes	NC	40
	Aldrin + Dieldrin	6	NC
	Chlordane	50	NC
	DDT+DDE+DDD	240	NC
OCP/	Endosulfan	270	NC
OPP	Endrin	10	NC
	Heptachlor	6	NC
	Methoxychlor	300	NC
	Chlorpyrifos	160	NC
PCB ⁴		1	NC

Table 6: HIL and HSL in mg/kg Unless Otherwise Indicated

Notes to Table 6:

1 Sum of carcinogenic PAH

- 2 The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.
- 3 The HSL have been calculated for a potential vapour intrusion pathway, a sand soil (conservative approach based on a mix of sandy and clayey fill encountered) and an assumed depth to contamination of 0 m to <1 m.
- 4 non dioxin-like PCBs only

As shown in Table 6, the adopted HSLs are predicated on a potential vapour intrusion pathway, as identified in the CSM. Although the CSM also identifies a direct contact pathway, and construction worker receptors, the corresponding HSLs are significantly higher than those for the vapour intrusion pathway and are therefore not drivers for further assessment and / or remediation. As such the direct contact and intrusive maintenance worker HSLs have not been listed.

10.2.2 Ecological Investigation Levels

EIL and Added Contaminant Limits (ACLs), where appropriate, have been derived in NEPC (2013) for only a short list of contaminants comprising As, Cu, Cr (III), DDT, naphthalene, Ni, Pb and Zn. The adopted EILs, derived using the *Interactive (Excel) Calculation Spreadsheet* (Standing Council on Environment and Water (SCEW) website (http://www.scew.gov.au/node/941)) are shown in the following Table 7.

Analyte EIL		EIL	Comments		
Metals	Arsenic	100	Adopted parameters		
	Copper	110	pH = 6 (conservative value in the absence of lab		
	Nickel	35	testing)		
	Chromium III	320	CEC = 5 cmol _c /kg (conservative value in the absence of lab testing)		
	Lead	1100	assumed clay content 5% in filling (conservative)		
	Zinc	310	'Aged' (>2 years) source of contamination		
PAH	Naphthalene	170	high for traffic volumes in NSW		

Table 7: EIL in mg/kg

10.2.3 Ecological Screening Levels

ESL are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in the following Table 8.

	Analyte		Comments	
	C ₆ – C ₁₀ (less BTEX) [F1]	180*		
TRH	>C10-C16 (less Naphthalene) [F2]	120*		
	>C ₁₆ -C ₃₄ [F3]	300		
	>C34-C40 [F4]	2800	All ESLs are low reliability apart from	
	Benzene	50	those marked with *	
BTEX	Toluene	85	which are moderate reliability	
	Ethylbenzene	70]	
	Xylenes	105		
PAH	Benzo(a)pyrene	33		

Notes to Table 8:

¹ The ESL have been calculated for a coarse soil based on the upper silty sandy filling being the predominant contaminated soil type and Urban residential and public open space land use

The NEPM ESL of 0.7 mg/kg is understood to be based on a single invertebrate species referenced in the 1999 Canadian Soil Quality Guidelines (since updated) and is considered conservative in the Australian context. These guidelines were updated in 2010 and now suggest a B(a)P concentration of 20 mg/kg for the protection of environmental health based on the soil contact exposure pathway.

It is also noted that the benzo(a)pyrene ESL is a low reliability value. Higher reliability screening levels have been published in CRC CARE (2017), Risk-based Management and Remediation Guidance for Benzo(a)pyrene, CRCCARE Technical Report No. 39. The high reliability value of 33 mg/kg for aged contamination recommended in CRC CARE (2017) has therefore been adopted.

10.2.4 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services.

The adopted management limits from Schedule B1 of NEPC (2013) are shown in the following Table 8.

Analyte		Management Limit	
TRH >C10-C	$C_6 - C_{10}$ (F1) #	700	The management limits have been calculated for a coarse
	>C10-C16 (F2) #	1000	soil based on sandy fill being the predominant soil type at surface and residential
	>C ₁₆ -C ₃₄ (F3)	2500	landuse. This assumption is conservative due to the mix of
	>C34-C40 (F4)	10000	sandy and clayey soils present within the stockpiles.

Table 9: Management Limits in mg/kg

Notes to Table 9:

Separate management limits for BTEX and naphthalene are not available hence these have not been subtracted from the relevant fractions to obtain F1 and F2

10.2.5 Asbestos in Soil

Bonded ACM is the most common form of asbestos contamination across Australia, generally arising from:

- Inadequate removal and disposal practices during demolition of buildings containing asbestos products;
- Widespread dumping of asbestos products and asbestos containing fill on vacant land and development sites; and
- Commonly occurring in historical fill containing unsorted demolition materials.

Mining, manufacturing or distribution of asbestos products may result in sites being contaminated by friable asbestos including free fibres. Severe weathering or damage to bonded ACM may also result in the formation of friable asbestos comprising fibrous asbestos (FA) and/or asbestos fines (AF).

Asbestos only poses a risk to human health when asbestos fibres are made airborne and inhaled. If asbestos is bound in a matrix such as cement or resin, it is not readily made airborne except through substantial physical damage. Bonded ACM in sound condition represents a low human health risk, whilst both FA and AF materials have the potential to generate, or be associated with, free asbestos fibres. Consequently, FA and AF must be carefully managed to prevent the release of asbestos fibres into the air.

Schedule B2 of NEPC (2013) describes the recommended assessment process for asbestos in soil, commencing with a preliminary assessment, looking into the site history and conditions and therefore the propensity for asbestos to be present. The preliminary assessment may or may not include sampling and testing. A detailed assessment of asbestos contamination is recommended in NEPC (2013) under the following circumstances:

- To resolve uncertain findings from the preliminary assessment (e.g. the extent, quality and quantity of asbestos in soil is not known and the potential for asbestos is identified); and / or
- The remediation and management approach requires asbestos contamination to be fully delineated and assessed (e.g. asbestos contamination is to be relocated and contained); and / or
- To assist in assessing the likely effectiveness of alternative remediation and management strategies; and / or
- Land uses are to be determined and delineated according to the extent and nature of the asbestos contamination.

The previous assessment findings are used as a tool to assess the likelihood of finding asbestos in soil at the site, and the form of asbestos that may occur. The lack of reported asbestos at a sample location does not necessarily mean that asbestos is not present at the location.

The health screening levels for asbestos are presented in Table 10 below:

Form of Asbestos	Health Screening Level – Residential A (including day care centres) (w/w)		
Bonded ACM	0.01%		
AF	0.001%		

Table 10: Health Screening Levels (HSLs) in mg/kg

It is noted that observations of minor fibro fragments (potential ACM) were limited to the surface immediately adjacent to some existing buildings. There were no obvious indication of building rubble or potential ACM within general site soils/fill or within stockpiled materials. Sieving for detailed asbestos investigation was therefore not considered to be warranted.

10.2.6 Waste Classification

The results of chemical testing were also compared against NSW EPA (2014) to assess possible offsite disposal options to a licenced facility (if required).

11. Assessment of Contamination

11.1 Asphalt access track

The results of chemical analysis from the supplementary investigation indicated the soil samples tested within the asphalt access track were generally within the health investigation levels for low density residential land use (primary schools) (HIL-A/EIL), with the exception of four samples exceeding the human health landuse criteria for benzo(a)pyrene TEQ and one sample exceeding total PAH. It is noted that all the samples exceeding the human health criteria generally comprised the asphalt wearing course, associated with the current pavement (ie asphalt at the surface) or former pavement (ie buried asphalt wearing course - asphalt lens).

One soil sample (413/0.15) comprising pavement subbase filling immediately below the asphalt wearing course which marginally exceeded the HIL criteria for benzo(a)pyrene TEQ. Upon further inspection of material tested, minor asphalt fragments were observed within the sample. The elevated PAH in this sample is therefore likely to be a result of cross contamination from the overlying asphalt layer.

Results of coal tar and Phenol testing within the four samples of asphalt tested indicated the absence of coal tar or Phenols.

To further assess the possible origins and implications (if any) of elevated PAH in asphalt materials, the analytical Chromatographs were reviewed by the testing laboratory (Envirolab) and DP against generic Chromatographs for various materials (ie Envirolab reference library). Based on the review, the Chromatographs generally suggest that the elevated PAH impacts are associated with asphalt / bitumen and charcoal/coal. The Chromatographs of the asphalt sample and the chromatograph for generic asphalt from the Envirolab reference library are included in Appendix B for reference.

Additional ASLP leachate testing was also conducted on the subbase materials that contained elevated PAH (413/0.15) due to asphalt fragments. The results of testing indicated that the materials had a low propensity to leach.

The following observations were also made regarding the condition of the asphalt wearing course materials at the current surface of the site (ie Pits 401 to 405 and 410 to 413) and the buried asphalt wearing course (ie Pits 106A, 406 to 409):

- Asphalt on the surface appears to have larger subrounded gravel and comprises less binding materials (bitumen) within its matrix. The surface asphalt also generally comprised lower PAH concentrations;
- The buried asphalt layer (lens) at depth (0.2 m to 0.4 m) within the central northern portion of the site appears to have smaller subangular gravel and comprises more binding material within its matrix. Previous and current testing within the buried asphalt also indicates the PAH content within the asphalt / bitumen is variable with results ranging from below detection limits to 90 mg/kg of B(a)P.

Photos of the asphalt samples are shown in the photo plates, Appendix D. It is noted, however, that both asphalt materials are associated with granular pavement construction for access tracks within the site. Additional granular materials have been placed over the buried asphalt pavement within the central northern portion of the site. Refer to Photo 37 in Appendix D showing the general soil profile associated with the buried asphalt layer and granular pavements.

It is noted that where B(a)P occurs in bitumen fragments (ie associated with road pavements) it is relatively immobile and typically has a low bioavailability. On this basis, the occurrence of B(a)P related to bitumen/asphalt within the current/former pavements does not represent a significant health risk as indicated in NEPM (2013) Schedule B1. In addition, the pavement materials generally conform with the NSW EPA Recovered Aggregate resource recovery order and as such are generally suitable for "application to land as a road making material, or in building, landscaping or construction works".

The four samples in question also exceeded the ecological investigation (EIL) criteria for hydrocarbons and benzo(a)pyrene. As indicated the asphalt and fill materials within the access track comprise pavement material. Such materials are considered to hold low significance to the ecological environment and are therefore considered to be low risk.

The following previous results from within the access track are also noted:

- PCA (JK, 2019) two bores (Bore 2 and 4) indicated marginally elevated B(a)P TEQ (Bore 2) above HIL A and TRH (Bore 4) above ESL;
- The bores undertaken by JK indicated asphalt and ash within the surface samples which is generally consistent with the subsurface profile encountered by DP;
- The marginally elevated results of B(a)P TEQ and TRH are also generally consistent with the concentrations encountered in the asphalt surface samples encountered in the supplementary DSI;
- Results of the DSI (DP, 2019) also comprised two bores within the access track (Bores 106 and 107), Bore 106 was retested as 106a and is detailed within the supplementary DSI;
- Bore 107 did not indicate elevated contaminant concentrations.

The results of previous testing are generally commensurate with the results of the current assessment.

Based on the results of the current and previous testing, the elevated PAH/TRH associated with pavement materials observed within the access track are therefore not considered to be significant due to the following:

- Although elevated B(a)P was found, it can be attributed to the asphalt/bitumen wearing course (at the surface and buried) associated with current/former pavements/paths within the site;
- The asphalt/bitumen materials typically have a low bioavailability and are relatively immobile as evidenced by leachability testing (ie indicating a low propensity to leach);
- Results of testing and observations (visual and olfactory) within the asphalt materials indicated the absence of coal tar and phenols;
- The source of elevated PAH are likely to be due to asphalt/bitumen and charcoal/coal based on the Chromatographs;
- According to NEPM (2013), elevated levels of B(a)P in relatively immobile sources, such as bitumen fragments, do not represent a significant risk;
- The materials in question are associated with pavement materials within the site. The pavement
 materials generally conform with the NSW EPA Recovered Aggregate resource recovery order and
 as such are generally suitable for "application to land as a road making material, or in building,
 landscaping or construction works".

It is also noted that the proposed school development includes a car parking area at the front of the site. The pavement materials in question could be utilised beneath the car park area as a precautionary measure for the proposed school development. It is noted that the asphalt/bitumen materials are preclassified General Solid Waste for disposal to a licensed landfill, or could be considered for recycling.

11.2 Building Surrounds

The results of chemical analysis from the supplementary indication indicated the surface and near surface soils tested surrounding the existing buildings were all within the health investigation levels for low density residential land use (primary schools) (HIL-A/EIL). Minor detectable concentrations of OCP pesticides were observed surrounding Building 1; however, these results were within the health-based criteria for the proposed development.

Two of the six fibro fragments tested for asbestos identification indicated the presence of ACM adjacent to Buildings 5 and 8. The fibro fragments (generally in good condition) observed across the site were directly adjacent the buildings and at the surface. It is also noted that 500mL asbestos testing within the surface soils surrounding fibro / weatherboard buildings indicated the absence of asbestos within the surface soils.

The minor ACM identified within the fibro fragments at the surface adjacent to existing Buildings 5 and 8 are likely to be associated with the poor condition of the buildings, and do not appear to be related to impacts within underlying soil/fill.

11.3 Stockpile Materials

The results of chemical analysis within the stockpiled soils were all within the health investigation levels for low density residential land use (primary schools) (HIL-A/EIL). It is also noted that building materials such as fibro, brick, concrete, tile, ceramics, etc were not observed within the stockpiled materials. The results of 500mL asbestos testing within the stockpiled soils indicated the absence of ACM within the samples tested.

Three primary samples and two QA samples exceeded the ecological investigation (EIL) criteria for zinc (four), nickel (1) and copper (1). It is noted that abundant vegetation growth was observed in several stockpiles and due to the relatively small volumes of the stockpiled materials, the minor EIL exceedances are not considered to be significant.

11.4 Waste Classification

The majority of the samples tested in the access track returned contaminant concentrations below maximum permissible concentrations for classification as General Solid Waste (GSW) without leachate testing, with reference to NSW EPA (2014), with the exception of elevated benzo(a)pyrene within subbase filling in Pit 413/0.15.

Additional TCLP leachate testing was conducted on the subbase materials that contained elevated total contaminant concentrations and indicated that the materials tested had a low propensity to leach. The soils tested were reclassified as GSW, with reference to the NSW EPA (2014).

Based on the observations made and the results of laboratory testing, the materials tested are classified as 'General Solid Waste' based on total and leachable contaminant concentrations (ie SCC1 / TCLP1). These materials are suitable for off-site disposal at a facility licenced to accept licensed to accept GSW (TCLP1).

As discussed, majority of the samples with elevated results were asphalt materials sampled from the asphalt wearing course or buried asphalt layer. Testing within this material also confirmed the absences of coal tar. The asphalt materials are therefore pre-classified as GSW, with reference to the NSW EPA (2014).

As outlined in Section 11.1 the results of the previous assessments undertaken by JK and DP are consistent with the observations and contaminant concentrations encountered within the current supplementary DSI. Elevated B(a)P was encountered within a surface sample of Bore 2 (JK, 2019). The results of TCLP testing within the access track indicate a low propensity to leach as described above. The elevated B(a)P may also be attributed to asphalt materials which are pre-classified as GSW, with reference to the NSW EPA (2014) as described above.

12. Comments / Recommendations

The results of the supplementary assessment have identified the following:

- General absence of gross contamination within the site;
- Presence of shallow filling within majority of test pits / bores;
- Presence of ash and coal reject within the upper fill materials within the access track footprint;
- Presence of buried asphalt lenses (ie associated with a former pavement) in pits north-west of Building 5 (Pits 406, 407, 408, 409 and 106A);
- Asphalt materials exceeded the adopted HIL and EIL, however, the exceedances can be attributed to the asphalt / bitumen wearing course which typically has low bioavailability and are relatively immobile. The elevated results are therefore not considered to be significant as discussed in Section 11.1;
- Laboratory results indicated the absence of coal tar with the asphalt samples tested;
- Fill materials tested are within the criteria for classification as GSW based on total and leachable concentrations;
- Asphalt materials are pre-classified as GSW, with reference to the NSW EPA (2014);
- Testing on two fibro fragments at the surface adjacent to Buildings 5 and 8 indicated the presence of ACM. The minor ACM identified are likely to be associated with the poor condition of the adjacent buildings, and do not appear to be related to impacts within underlying soil/fill.
- General absence of gross contamination within the stockpiled soils tested.

In summary, the site is considered to be suitable for the proposed school development in relation to site contamination, subject to appropriate demolition of existing structures and clearance of hazardous building materials including minor surface ACM identified adjacent to Buildings 5 and 8.

It is noted that the proposed school development includes a car parking area at the front of the site. The existing pavement materials within the site (including the buried pavement at Pit 106) containing elevated PAH could be utilised beneath the car park area for pavement construction as a precautionary measure. It is recommended that the pavement materials containing asphalt/bitumen are not reused on-site at the site surface due to aesthetic considerations and to limit dermal contact.

It is understood that residential development may be considered in future for the site. If residential development is considered, it is recommended that the existing pavement materials containing asphalt/bitumen and elevated PAH are appropriately removed/disposed from the site and validated.

As indicated in the SAQP (DP, 2020), post-demolition surface inspections will be conducted over building footprints and the immediate surrounds to confirm site conditions following demolition activities. Demolition should be conducted by a licensed contractor in accordance with statutory and regulatory requirements and include clearance for hazardous building materials. A brief report should be prepared presenting the results of post-demolition inspections, sampling and testing for clearance to address the minor ACM impacts identified. The validation report should include details of any material disposed off-site (other than construction and demolition waste) or imported to site during demolition works.

12.1 Updated Conceptual Site Model

The data collected for the supplementary assessment has generally confirmed that certain potential contaminant sources outlined in the CSM in Section 8 pose a potentially complete pathway to the identified receptor(s) whilst others do not. No additional sources of contamination have been identified as a result of the testing results.

Based on the above an updated CSM has been prepared and described below in Table 11.

Table 11: Updated Conceptual Site Model

Known Sources	Primary Release Mechanism		Identified		Potential Receptors		Actual Risk to	
		•	Impacted Media	Contaminants of Concern	Exposure Pathway	Current	Future	Receptors based on DSI Findings
Demolition of former structures or maintenance, renovations to existing / former buildings	Demolition / maintenance of buildings / structures	Exposure / disturbance during proposed development	Surface and near surface Soils	Asbestos (Bonded ACM)	inhalation (dust), ingestion	Site workers, maintenance workers, consultants, trespassers.	Site workers, residents, maintenance workers, consultants, trespassers	Low to Moderate (Bonded Asbestos impacts identified at the surface)

13. Conclusions

The supplementary investigation was conducted to address data gaps and confirm the contamination status of the site. The results of investigations generally indicate the absence of gross contamination within the site.

The site is considered to be suitable for the proposed school development in relation to site contamination, subject to appropriate demolition of existing structures and clearance of hazardous building materials including minor surface ACM identified adjacent to Buildings 5 and 8.

It is noted that the proposed development includes a car parking area at the front of the site. The existing pavement materials within the site found to contain elevated PAH (associated with asphalt/bitumen) could be utilised beneath the car park area for pavement construction as a precautionary measure. If potential future residential development is proposed the existing pavement materials with elevated PAH should be remediated, validated and disposed off site to a licensed landfill.

Post-demolition surface inspections are recommended over building footprints and the immediate surrounds to confirm site conditions following demolition activities. A brief report should be prepared presenting the results of post-demolition inspections, sampling and testing for clearance to address the minor ACM impacts identified.

14. References

ANZECC (2000), *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*, Australian and New Zealand Environment and Conservation Council.

ANZAST (2018), *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*, Australian Government Initiative, August 2018.

DP (2020), Sampling, Analysis and Quality Plan Supplementary Contamination Assessment, Lot 100 Maitland Street, Muswellbrook, Report 91601.03.00.R.001.Rev6, dated March 2020, Douglas Partners Pty Ltd.

DP (2019a), *Detailed Site Investigation (Contamination), Lot 100 Maitland Street, Muswellbrook, NSW,* Douglas Partners Pty Ltd, Report 91601.00.R.001.Rev6.

DP (2019b), *Hazardous Building Materials (HBM) Survey, Lot 100 Maitland Street, Muswellbrook, NSW,* Douglas Partners Pty Ltd, Report 91601.01.R.001.Rev0

JK (2019), *Preliminary Contamination Assessment, Lot 62, Maitland Street, Muswellbrook, NSW*, JK Environments, 30 April 2019.

NEPM (2013), *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013*', National Environment Protection Council.

NSW EPA (2020), *Consultants Reporting on Contaminated Land – Contaminated Land Guidelines*, NSW Environment Protection Authority.

NSW EPA (2014), *Waste Classification Guidelines, Part 1: Classifying Waste*, NSW Environment Protection Authority.

15. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at Lot 100 Maitland Street, Muswellbrook with reference to DP's email proposal NCL200113 dated 2 April 2020 and acceptance received from Pacific Brook Christian School Ltd. The work was carried out under an agreed Professional Services Contract Agreement. This report is provided for the exclusive use of Pacific Brook Christian School Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has been detected by observation and by laboratory analysis, on the surface of the site. Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to parts of the site being inaccessible and not available for inspection/sampling (i.e. due to concrete pavements). It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About This Report Sampling Methods Soil Descriptions Symbols and Abbreviations Test Pit Logs (Pits 401 to 413, 106A and 501 to 503)

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

4,6,7 N=13

In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soils	(>35% fines)
-----------------------	--------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts	

man olaye er ena		
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace
		clay

In coarse grained soils (>65% coarse)
 with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test
- V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

Bedding plane
Clay seam
Cleavage
Crushed zone
Decomposed seam
Fault
Joint
Lamination
Parting
Sheared Zone
Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal

ari

sv sub-vertical

Coating or Infilling Term

clean
coating
healed
infilled
stained
tight
veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

A. A. A. Z	

Asphalt Road base

Concrete

Filling

Soils

Topsoil Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301967 **NORTHING:** 6426916.7 **PIT No:** 401 PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

\square		Description				npling & In Situ Testing			لع Dynamic Penetrometer Test (blows per mm)				
R	Depth (m)	of Strata	Graphic Log	Type	Depth Sample		Results & Comments	Water					
\square						Se			5	10	15	20	
	· 0.1	ASPHALT	4.4	D	0.05	Е	PID<1			÷		:	
	0.2	FILL / ASH - Fine to coarse grained, dark grey with fine $\gravel,$ and coal reject, moist /		D	0.15	E	PID<1					-	
		SILTY CLAY - Low plasticity pale brown, M <wp< td=""><td></td><td>D</td><td>0.25 0.3 0.4</td><td>В</td><td>pp = 350 PID<1</td><td></td><td></td><td></td><td></td><td></td></wp<>		D	0.25 0.3 0.4	В	pp = 350 PID<1						
		From 0.6m, medium plasticity and brown M>WP, very											
		stiff			0.8		pp = 350-400						
	- 0.9	Pit discontinued at 0.9m, limit of investigation							-1				
												:	
										:		:	
									[
	-2								-2				
												:	
										:		:	
												:	
												:	
	- 3								-3				
										:		:	
	-4								4	:		:	
												:	
									t i			:	
										•		:	
									[

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND								
A Auger	sample G	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulk sa		Piston sample) Point load axial test Is(50) (MPa)					
BLK Block	ample U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)					
C Core d		Water sample	pp	Pocket penetrometer (kPa)					
D Disturb	ed sample >	Water seep	S	Standard penetration test					
E Enviro	nmental sample 📱	Water level	V	Shear vane (kPa)					

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --EASTING: 301959.7 **NORTHING:** 6426923.2

PIT No: 402 **PROJECT No: 91601.03** DATE: 7/4/2020 SHEET 1 OF 1

	Depth	Description	hic		San		& In Situ Testing	5	Dynan	nic Pene	tromete	r Tost
RL	(m)	of Strata	Graphic Log	Loć Type	Depth	Sample	Results & Comments	Water		(blows p	er mm)	
	0.05		- <u>-</u>		 	_ Е	PID<1	_	5	10	15	20
		ASPHALT		D	0.17	E	PID<1		-	• • • • • • • • • • • • • • • • • • • •		
		FILL / ASH - Fine to coarse grained, dark grey with fine gravel, and coal reject, moist		D	0.4	E	PID<1		-	• • • • • •		
	-	SILTY CLAY - Medium plasticity, pale brown, M>WP							-	•		
	- 0.8	Pit discontinued at 0.8m, limit of investigation										
	- 1 								-1			
	-								-			
	- 3 - - - - - -								-3			
	-4								-4			

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)				
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)				
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	ž	Water level	V	Shear vane (kPa)				

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301942 **NORTHING:** 6426943 **PIT No:** 403 PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

	Donth	Description	Description					5	Dynamic Penetrometer Test				
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	5	(blows p	er mm)		
	0.05	¬ASPHALT /			0.01	E E	PID<1			:	15	20	
	- 0.1	FILL / GRAVELLY SAND - Generally comprising fine to medium grained brown, trace subrounded cobbles, moist		D	0.2	Е	PID<1			•		•	
		FILL / ASH - Fine to coarse grained, dark grey with fine gravel, and coal reject, moist		D	0.4	Е	PID<1		_				
	- 0.5	SILTY CLAY - Medium plasticity, pale brown, M>WP							-	:		:	
	-	Pit discontinued at 0.5m, limit of investigation							-	:		:	
	-								-				
	-1								-1			:	
	-								-			:	
	-								-	•		:	
	-									•		:	
	-								-				
	-								-				
	-									:		:	
	-												
	-2								-2	•		:	
	-								-			:	
	-									•		:	
	-								-	•		:	
	-								-			:	
	-											:	
	-											:	
	-								-	•		:	
	-3								-3				
	-								-				
	-								-	:		:	
												:	
	-									•			
	-									•		:	
										•		:	
	-4								-4	•		:	
	-											:	
	-									•			
										•			
	-									•			
	-								-	•			
										•			

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMF	PLING	& IN SITU TESTING			٦
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --EASTING: 301998 **NORTHING:** 6426955 **PIT No:** 404 **PROJECT No: 91601.03 DATE:** 7/4/2020 SHEET 1 OF 1

	Depth	Description	ohic g				& In Situ Testing	ter	Dynam	nic Pene	tromete	r Test
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		(blows p	er mm)	
\vdash	0.05	ASPHALT /				S		-	5	10 :	15 :	20
	0.1~ - 0.25-	FILL / GRAVELLY SAND - Generally comprising fine to medium grained brown, trace subrounded cobbles, moist		D	0.2	E	PID<1		-			· · · ·
	-	FILL / ASH - Fine to coarse grained, dark grey with fine gravel, and coal reject, moist							-			
	-	SILTY CLAY - Medium plasticity, pale brown with fine sand, M>WP										
	- 0.8-	Pit discontinued at 0.8m, limit of investigation							-		:	
	-1								-1			
	-								-			
	-								-	:		
	-								-	:	:	•
	-									:		•
	-								-	:		•
	-2								-2			•
	-										:	•
	-											•
	-								-			•
	-								-			
	-								-			
	-									:		•
	-3								-3	:		•
	-								-			•
	-											•
	-								-	:		•
	-											•
	-								-			
	-4								-4			
	-											
	-											
	-								-			
	-								-			
	-								-			
	-								[
L												

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMF	PLINC	3 & IN SITU TESTING	LEG	END	1
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --EASTING: 301984.2 **NORTHING:** 6426979.9

PIT No: 405 PROJECT No: 91601.03 **DATE:** 7/4/2020 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling	& In Situ Testing				
님	Depth (m)	of	Graphic Log	e	th	ble	Results &	Water	Dynamic P (blows	enetrometer Tes per 150mm)	st
		Strata	ଅ <u>ଅ</u>	Type	Depth	Sample	Results & Comments	>	5 10		
		ASPHALT /									
	0.15 0.25	FILL / GRAVELLY SAND - Generally comprising fine to medium grained brown, trace subrounded cobbles, moist		D D	0.2 0.3	Е	PID<1		- -		
		FILL / ASH - Fine to coarse grained, dark grey with fine gravel, and coal reject, moist			0.4		pp = 200		- L	٦	
		SILTY CLAY - Low plasticity, pale brown, some fine grained sand and rootlets		U					-		
	0.8-	SILTY CLAY - Medium plasticity, brown, very stiff to hard $M{<}WP$			0.8 0.85		pp >400			μ	
-	-1			D	1.5		pp >400		-1		
-	-2	From 2.3m, with sandy clay and gravel		D	2.3 2.5				-2		
	2.85	Pit discontinued at 2.85m, limit of investigation									
-	-3								-3		
	- 4								-4		

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMF	LINC	3 & IN SITU TESTING			1
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301987.1 **NORTHING:** 6426982.7 **PIT No:** 406 PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

			Description	Jic		Sam		& In Situ Testing	L	Duran	- Deve		
R	Dep (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynam (plows p	er mm)	riest
_		_	Strata		É.	ŏ	Sal	Comments		5	10	15	20 :
			FILL / SILTY SAND - Fine to medium grained, brown with gravel, clay and trace rootlets, moist							-	•		• • • • •
	-	0.3	FILL - Dark grey, asphaltic lens		D	0.35	Е	PID<1		-			
	-	0.4		\mathcal{X}	D	0.55	E	FIDET		-		-	÷
	ļ		SILTY CLAY - Pale brown, low plasticity, with some fine grained sand, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp<>										
	ŀ	0.7	Pit discontinued at 0.7m, limit of investigation										
	ļ		, .										
	-1									-1			
	-									-			
	[:
	-									-			:
	ŀ									-	:		:
													:
	-												
	-									-			
	-2									-2			:
	-									-			:
	F									-			
	F									- :			:
	[÷
	ŀ									-			
	-									-			
	-3									-3		-	÷
	-									-			:
	ŀ									-		-	:
	[:		:
	-									-			:
	ŀ									-			
	Į												
	-									. :		-	:
	-4								.	-4			:
	-									- :			:
	[•		:
	ŀ									-	•		
	ŀ									-			
	Ì												
	ŀ												
	ŀ									-			
L	L											:	

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LINC	3 & IN SITU TESTING			1
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

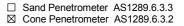
CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301998.5 **NORTHING:** 6426958.9 PIT No: 407 PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

		Description	ic		Sam	pling &	& In Situ Testing				
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Pene (blows p	etrometer per mm)	lest
	-	Strata FILL / SILTY SAND - Brown, fine to medium grained, brown with gravel, clay and trace rootlets, moist From 0.25m to 0.3m, asphaltic lens, asphaltic lens only		D	<u>م</u> 0.28	E	PID<1		<u>5 10</u>	15	20
	_ 0.3 - - 0.0	on northern pit wall SILTY CLAY - Pale brown, low plasticity, with some fine grained sand, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></wp<>							-		
	-	Pit discontinued at 0.6m, limit of investigation									
	-1								-1		
	-								-		•
	-										
	-2								-2		
	-										• • • • •
	-								-		• • • • •
	-										
	-3								-3		
	-										•
	-										
	-4								-4		
	-										
	-										•
	-										- - - - - - - - - - - - - - - - - - -

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)


LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	PLINC	3 & IN SITU TESTING			1
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	

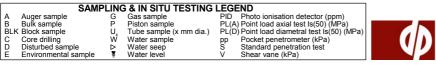
Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301986.1 NORTHING: 6426985.3 **PIT No: 408** PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

RL		Description	jc		Sam		& In Situ Testing	5	Duran			
ľ	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water		nic Pene (blows p		riest
	- 0.3	Strata FILL / SILTY SAND - fine to medium grained with gravel and clay, moist From 0.2m to 0.22m, trace asphaltic lens on south \vestern corner of pit		D	0.21	E	PID<1		-	10	15	20
	- 05	SILTY CLAY - Pale brown, low plasticity, with some fine $\sin grained$ sand , M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp<>										
	-	Pit discontinued at 0.5m, limit of investigation	, 									:
	- - 1 - -								- 1 1			
	2								-2			
	-								-			
	- 3 								-3			
	4											
	-								-			


RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Little sample recovery in 0.21m sample

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301976.2 **NORTHING:** 6426996.7 **PIT No:** 409 PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

	Depth	Description	Graphic Log				& In Situ Testing	Water	Dyna	mic Pene	tromete	r Test
RL	(m)	of Strata	Grag Lo	Type	Depth	Sample	Results & Comments	Wa	5	(blows p	er mm) 15	20
	0.05 0.1 0.15	FILL / SILTY SAND - FIne to coarse grained, brown,		D	0.08	E	PID<1		-			
		FILL - Dark grey, asphaltic lens		D	0.2	Е	PID<1		-	•		
	0.3-	FILL / GRAVELLY SAND - Generally comprising fine to medium grained brown, trace subrounded cobbles, moist								-		
		FILL / ASH - Fine to coarse grained, dark grey with fine gravel, and coal reject, moist								•		
		SILTY CLAY - Pale brown, low plasticity, with some fine grained sand, $M{<}WP$							-	•		•
	-1	Pit discontinued at 0.5m, limit of investigation							-1	•		
										•		
									-	• • •		• • •
									-	* * * * *		
										• • •		
									-	•		
	-2								-2	•		
										•		•
										• • •		* * *
										• • •		•
										•		
										•		
										•		•
	- 3								-3	• • •		•
									-	•		•
										•		•
									-	•		
										•		
										•		•
	-4								-4	•		
										•		
									-	•		
									-	•		
										•		
									-	•		

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAM	PLING	& IN SITU TESTING			٦
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
Е	Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301949 **NORTHING:** 6426978 **PIT No:** 410 PROJECT No: 91601.03 **DATE:** 7/4/2020 SHEET 1 OF 1

	D "	Description	ji _		Sam		& In Situ Testing	2	Dynamic Penetrometer Test		
묍	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)		
\mid	0.05	Strata		Т	Ő	Sa	Comments	_	5 10 15 20 		
	0.05	FILL / ASH - Fine to coarse grained, dark grey with fine gravel, and coal reject, moist	\bigotimes	D	0.2	Е	PID<1				
		SILTY CLAY - Medium to high plasticity, brown, trace roots, $M \geq WP$, firm to stiff			0.3		pp = 200				
		From 0.6m, very stiff		U							
					0.75						
	- 1			D	1.0	Е	PID<1		-1		
									-		
					1.8		pp = 200-300				
	-2				1.0		μμ = 200-300		-2		
		From 2.0m, trace gravel									
							nn - 200 200		-		
				D	2.5	E	pp = 200-300 PID<1		-		
	2.7	Pit discontinued at 2.7m, limit of investigation									
	- 3								-3		
	- 4								-4		

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LINC	3 & IN SITU TESTING	SAMPLING & IN SITU TESTING LEGEND									
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)								
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)								
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
D	Disturbed sample	⊳	Water seep	S	Standard penetration test								
E	Environmental sample	ž	Water level	V	Shear vane (kPa)								

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --EASTING: 301416 **NORTHING:** 6426933 **PIT No:** 411 PROJECT No: 91601.03 **DATE:** 7/4/2020 SHEET 1 OF 1

[Depth	Description	hic				& In Situ Testing	er	Dynamic	Penetrome	ter Test
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	bynamie (bl	Penetrome ows per mn	n) 20
-	0.05	~ ASPHALT	<u> </u>	_D_	=0.01	E	PID<1				
	- 0.1	FILL / GRAVELLY SAND - Generally comprising fine to medium grained brown, trace subrounded cobbles, moist		D	0.2	E	PID<1		-		
	- 0.5	FILL / ASH - Fine to coarse grained, dark grey with fine	<u> //</u>								
	-	SILTY CLAY - Medium plasticity, pale brown, M>WP							-		•
	-	Pit discontinued at 0.5m, limit of investigation							. :		
											•
	-1								-1		
	-								- :	: :	•
	-								-		
											•
	-								-		•
	-								-	: :	•
											•
	-								-		•
	-2								-2		•
	-										•
											•
	-									:	•
	-								- :		
	-								- :	: :	•
											•
	-								-		•
	-3								-3		•
	-								- :		•
	[•
	-								-		•
	-									: :	•
									-		•
	-								- :	: :	•
	-										•
	-4								-4		•
										: :	-
	-								-		-
										: :	-
										: :	-
											•
									-		•
	-										•
L	L									: :	

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)							
BLK Block sample	U,	Tube sample (x mm dia.)) PL(D) Point load diametral test Is(50) (MPa)							
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D Disturbed sampl	e ⊳	Water seep	S	Standard penetration test							
E Environmental s	ample 📱	Water level	V	Shear vane (kPa)							

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301911 **NORTHING:** 6426984

PIT No: 412 PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

	Denth	Description	jc 🗖		Sam		& In Situ Testing	5	Durpor	nic Pene	tramata	r Toot
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		(blows p	er mm)	
	0.05	-\ASPHALT	· · · · ·		-0.01	E	PID<1	_	5	10	15	20
	- 0.03 - 0.11 - 0.2 -	FILL / GRAVELLY SAND - Generally comprising fine to medium grained brown, trace subrounded cobbles, moist		D	0.15	E	PID<1		-	- - - - - - - - - - - - - - - - - - -		
	- 0.5	FILL / ASH - Fine to coarse grained, dark grey with fine gravel, and coal reject, moist	بككل					_				
	-	SILTY CLAY - Medium plasticity, pale brown, M>WP							-			
	- - - 1	Pit discontinued at 0.5m, limit of investigation							1	- - - - - - - - - - - - - - - - - - -		
	-								-	•		
	-								-	• • • • • • • • • • • •		
	- - -2								-2			
	-								-	- - - - - - - - - - - - - - - - - - -		
	-											
	- - 3 -								-3			
	-								-			
	-											
	- 4 - -								-4			
	-									• • • • • • • •		
	-								-			

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND										
A Auger sample G Gas sample PID Photo ionisation detector (ppm)										
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)						
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Disturbed sample	⊳	Water seep	S	Standard penetration test						
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301884 **NORTHING:** 6427006 **PIT No:** 413 PROJECT No: 91601.03 **DATE:** 7/4/2020 SHEET 1 OF 1

Γ	D "	Description	jc _		Sam		& In Situ Testing	2	ັບ Dynamic Penetrometer Test				
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetromete (blows per mm)				
	- 0.1 - 0.2	ASPHALT		D D	0.08 0.15	Ë E E	PID<1 PID<1			10	15	20	
	-	SILTY CLAY - Medium plasticity, pale brown, M>WP							-				
	- 0.5	Pit discontinued at 0.5m, limit of investigation											
	-								-	•			
	1 - -								-1	•			
	-								-	-			
	-								-	•		· · · ·	
	-2								-2	•		· · · ·	
	-								-	-			
	-								-	•			
	-								-			•	
	-3								-3				
	-								-				
	-								-	•			
	-								-	•			
	-4								-4	•			
	-								-	-		•	
	-								-	-			
	-								-	- - - - - - -			

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

		SAMPL		SAMPLING & IN SITU TESTING LEGEND									
A	A Auger sample G Gas sample PID Photo ionisation detector (ppm)												
E	3	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)							
E	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)							
		Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
	2	Disturbed sample	⊳	Water seep	S	Standard penetration test							
E		Environmental sample	Ŧ	Water level	V	Shear vane (kPa)							

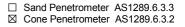
CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301916.7 NORTHING: 6426947.5 PIT No: 501 **PROJECT No: 91601.03** DATE: 7/4/2020 SHEET 1 OF 1

		Description	lic		Sam		& In Situ Testing	L.	
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
+		SANDY SILT / TOPSOIL Fire to modium grained dark		Ĺ	ă	Sa	Comments		5 10 15 20 · · · · · · ·
ŀ	0.1	SANDY SILT / TOPSOIL - Fine to medium grained, dark \brown with rootlets and clay, moist, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>·L∶∶∶</td></wp<>							·L∶∶∶
Ī		SANDY CLAY - Medium plasticity, fine to medium grained, pale brown, trace roots, stiff			0.3				
ŀ		S	/./.	D		в			
t		From 0.5m, very stiff		1	0.5 0.6	D	pp = 200-250		
-			·/·/·		0.0				
ł	0.8	SILTY CLAY - Medium to high plasticity, brown, M <wp,< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp,<>							
Ĺ	1	hard	1/1		1.0		pp >400		
ŀ				D		в	PP		· · · · · · · · · · · · · · · · · · ·
ŀ				D	1.3	D			
[1.5				
ł			1/1						
ļ									
ŀ	1.8	SANDY CLAY - Low plasticity, fine to medium grained,							
ŀ	2	brown, M <wp, hard<="" td=""><td></td><td>D</td><td>2.0</td><td></td><td></td><td></td><td> L</td></wp,>		D	2.0				L
F	2	From 2m, increased resistance		U	2.0				
ł		From 2.1m, increased sand content							
Ē									
ŀ				D	2.5				
ŀ	2.6	SILTY CLAY - Medium plasticity, brown, M > Wp, hard	· / · /						
Ī									
ŀ				D	2.9		pp >400		
Ē	3 3.0	Pit discontinued at 3.0m, limit of investigation							-3
-									
ł									
Ì									
ł									
ŀ									
[
ŀ	4								-4
ţ									
ŀ									
ł									
ļ									
ł									
ţ									

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth) and ripped


LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)						
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	ž	Water level	V	Shear vane (kPa)						

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

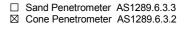
Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301858 **NORTHING:** 6427039

PIT No: 502 PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

		Description	ji		San		& In Situ Testing	5	Davis		1
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	blows	enetrometer Te per 150mm)	est
$\left \right $		Strata SILTY SAND / TOPSOIL - Fine to medium grained, brown with oragnics and rootlets		Т	D	Sa			5 10 	15 20	0
	0.1										
		SANDY CLAY - Medium plasticity, pale brown, fine to medium grained, with silt, M>WP, stiff							لم ا		
				D/	0.5		pp = 300				
		From 0.6m, very stiff		U50							
	0.8	SILTY CLAY - Medium to high plasticity, brown, trace sand, M <wp, hard<="" td=""><td>· / · /</td><td>050</td><td></td><td></td><td>100</td><td></td><td></td><td></td><td></td></wp,>	· / · /	050			100				
	- 1	sand, M≤WP, hard		D	0.9 0.95 1.0		pp >400		-1		
					1.0						
			$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$								
	-2			D	2.0		pp >400		-2		
	_			2	2.0		pp 100				
		From 2.2m, trace gravel	1								
				D	2.5						
				D	2.0						
	2.7	Pit discontinued at 2.7m, limit of investigation									
	0								-3		
	- 3								-3		
	- 4								-4		
		Forma Evaluator with 450mm busket (tooth) and rinned					haatian				

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth) and ripped


LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
A	Auger sample	G	Gas sample		Photo ionisation detector (ppm)						
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)						
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	ž	Water level	V	Shear vane (kPa)						

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 310915 **NORTHING:** 6427021 **PIT No: 503** PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

		Description	jc		San		& In Situ Testing	5	Durania Durata matematica Tarat
RL	Depth (m)	of	Graphic Log	Type	Depth Sample		Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
Н		SANDY SILTY CLAY - High plasticity, dark brown		-		Sa	Comments	+	5 10 15 20
	-	SANDY SILTY CLAY - High plasticity, dark brown, M>WP (possible filling)							
	- 0.3	SILTY CLAY - Medium plasticity, pale brown, M ≥Wp,							
	-	firm			0.5		pp = 100-200		┆┍┛
	-				0.0		pp		
	-			U					
	- 0.9	From 0.9m, very stiff			0.9 0.95		pp = 300		
	-1	SILTY CLAY - High plasticity, brown, M≽Wp, very stiff			1.0				
	-			U					
	-								
	-	From 1.5m, hard			1.45 1.5		pp >400		⊦ ⊢ ⊢
	-								
	-	From 1.8m, trace gravel							
	-2				2.0		pp >400		-2
	-								
	-	From 2.2m, increased resistance							
	- - 2.5 -				-2.5-				
	-	Pit discontinued at 2.5m, limit of investigation			-				
	-								
	-								
	- 3								-3
	-								
	-								
	-								
	-								
	-								
	-4								-4
	-								
	-								
	-								
	-								
	-								
	-								
_		Conno Executor with 450mm bucket (teeth) and rinned					hastion		

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth) and ripped

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND								
A	Auger sample	G	Gas sample		Photo ionisation detector (ppm)				
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)				
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)				
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	ž	Water level	V	Shear vane (kPa)				

CLIENT: PROJECT:

Pacific Brook Christian School Ltd Preparation of SAQP, Proposed School LOCATION: Lot 100 DP1261496, Maitland Street, Muswellbrook NSW

SURFACE LEVEL: --**EASTING:** 301930 **NORTHING:** 6426981 PIT No: 106A PROJECT No: 91601.03 DATE: 7/4/2020 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	-	Durai	Denter	
Я	Depth (m)	of	Graphic Log	Type	Depth	Li de Results & Comments		Water	Dynamic (blo	Penetrome ows per mi	n)
		Strata		É.	ă	Sa	Comments		5	10 15 : :	20
	-	FILL / SILTY SAND - Fine to medium grained, brown, with gravel, clay and trace rootlets, moist							-		•
	- 0.2 0.27			D	0.25	Е			-		•
	- 0.3 [/] - 0.4 -	FILL / GRAVELLY SAND - Generally comprising fine to medium grained brown, trace subrounded cobbles, moist		D D	0.35 0.5	E E			-		•
	- 0.6	FILL / ASH - Fine to coarse grained, dark grey with fine gravel, and coal reject, moist	<u>ryy</u>								
	-	SILTY CLAY - Low plasticity, pale brown with fine grained sand, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp<>									
	- 1	Pit discontinued at 0.6m, limit of investigation							-1		* * * *
	-										•
	-										•
	-								-		•
	-								-		
	-								-		•
	-								-		•
	-2								-2		•
	-								-		
	-										•
	-								-		•
	-										•
	-								-		•
	-								-		•
	-3								-3	: :	•
	-								-		•
	-										•
	-								-		•
	-										•
	-									: :	•
	-										•
	-4								-4		•
	-										•
											•
	-								-		* * *
	-										•
	[•
	-										• • • •

RIG: 6.5 Tonne Excavator with 450mm bucket (teeth)

LOGGED: Sebastian

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

SAMPLING & IN SITU TESTING LEGEND								
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)				
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)				
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D Disturbed sample	⊳	Water seep	S	Standard penetration test				
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)				

Appendix B

Laboratory Report Sheets Summary of Laboratory Results Tables B1 to B11 Chromatographs

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 240645

Client Details	
Client	Douglas Partners Newcastle
Attention	Paulo Sebastian
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	91601.03, Muswellbrook
Number of Samples	69 Soil, 6 Material
Date samples received	09/04/2020
Date completed instructions received	09/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date of Issue

Date results requested by

20/04/2020 20/04/2020

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda, Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Asbestos Supervisor

Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		240645-51	240645-52	240645-53	240645-54	240645-55
Your Reference	UNITS	401/0.05	401/0.15	402/0.4	404/0.2	406/0.35
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Surrogate aaa-Trifluorotoluene	%	91	82	77	79	88
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		240645-56	240645-57	240645-58	240645-59	240645-60
Your Reference	UNITS	106A/0.25	106A/0.35	106A/0.5	407/0.28	411/0.01
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Surrogate aaa-Trifluorotoluene	%	86	72	91	71	93
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		240645-61	240645-62	240645-63	240645-64	240645-65
Your Reference	UNITS	412/0.15	413/0.15	D1/JPS	D3/JPS	301/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.2
Toluene	mg/kg	[NA]	[NA]	[NA]	[NA]	<0.5
Ethylbenzene	mg/kg	[NA]	[NA]	[NA]	[NA]	<1
m+p-xylene	mg/kg	[NA]	[NA]	[NA]	[NA]	<2
o-Xylene	mg/kg	[NA]	[NA]	[NA]	[NA]	<1
naphthalene	mg/kg	[NA]	[NA]	[NA]	[NA]	<1
Total +ve Xylenes	mg/kg	[NA]	[NA]	[NA]	[NA]	<3
Surrogate aaa-Trifluorotoluene	%	88	86	85	83	83

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		240645-66	240645-67	240645-68	240645-69	240645-70
Your Reference	UNITS	301/2	301A/2	303/1	303/2	304/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	84	94	90	83	91
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		240645-71	240645-72	240645-73	240645-74	240645-75
Your Reference	UNITS	306/1	306/2	307/1	307/2	D7/JPS
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25

Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	82	84	81	86	80

Our Reference		240645-51	240645-52	240645-53	240645-54	240645-55
Your Reference	UNITS	401/0.05	401/0.15	402/0.4	404/0.2	406/0.35
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	160	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	670	290	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	1,300	630	<100	110	<100
TRH >C ₁₀ -C ₁₆	mg/kg	53	150	<50	<50	<50
TRH >C16 -C34	mg/kg	1,500	620	<100	140	<100
TRH >C ₃₄ -C ₄₀	mg/kg	1,400	720	<100	150	<100
Total +ve TRH (>C10-C40)	mg/kg	3,000	1,500	<50	290	<50
Surrogate o-Terphenyl	%	103	88	83	100	96

svTRH (C10-C40) in Soil						
Our Reference		240645-56	240645-57	240645-58	240645-59	240645-60
Your Reference	UNITS	106A/0.25	106A/0.35	106A/0.5	407/0.28	411/0.01
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	83	57
TRH C15 - C28	mg/kg	130	<100	<100	3,300	1,000
TRH C ₂₉ - C ₃₆	mg/kg	200	<100	<100	2,600	1,800
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	180	95
TRH >C ₁₆ -C ₃₄	mg/kg	240	<100	<100	5,300	2,100
TRH >C ₃₄ -C ₄₀	mg/kg	460	<100	<100	1,200	2,300
Total +ve TRH (>C10-C40)	mg/kg	700	<50	<50	6,600	4,400
Surrogate o-Terphenyl	%	100	82	97	#	118

svTRH (C10-C40) in Soil						
Our Reference		240645-61	240645-62	240645-63	240645-64	240645-65
Your Reference	UNITS	412/0.15	413/0.15	D1/JPS	D3/JPS	301/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	15/04/2020	15/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	170	<100	<100	110
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	[NA]	[NA]	[NA]	[NA]	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	210	<100	<100	140
TRH >C ₃₄ -C ₄₀	mg/kg	100	130	<100	<100	110
Total +ve TRH (>C10-C40)	mg/kg	100	340	<50	<50	240
Surrogate o-Terphenyl	%	94	101	89	82	90

svTRH (C10-C40) in Soil						
Our Reference		240645-66	240645-67	240645-68	240645-69	240645-70
Your Reference	UNITS	301/2	301A/2	303/1	303/2	304/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	270	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	180	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	140	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	320	<50	<50	<50
Surrogate o-Terphenyl	%	85	97	75	88	91

svTRH (C10-C40) in Soil						
Our Reference		240645-71	240645-72	240645-73	240645-74	240645-75
Your Reference	UNITS	306/1	306/2	307/1	307/2	D7/JPS
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	160	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	200	<100	220	<100
TRH >C10 -C16	mg/kg	<50	69	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	69	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	260	100	200	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	150	<100	230	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	480	100	430	<50
Surrogate o-Terphenyl	%	82	103	106	88	99

PAHs in Soil						
Our Reference		240645-51	240645-52	240645-53	240645-54	240645-55
Your Reference	UNITS	401/0.05	401/0.15	402/0.4	404/0.2	406/0.35
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/04/2020	14/04/2020	14/04/2020	14/04/2020	16/04/2020
Date analysed	-	16/04/2020	14/04/2020	14/04/2020	14/04/2020	16/04/2020
Naphthalene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	1.2	<0.1	<0.1	0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Phenanthrene	mg/kg	0.6	<0.1	0.1	1.3	<0.1
Anthracene	mg/kg	0.4	<0.1	<0.1	0.4	<0.1
Fluoranthene	mg/kg	8.2	0.2	0.2	2.1	<0.1
Pyrene	mg/kg	11	0.2	0.1	1.6	<0.1
Benzo(a)anthracene	mg/kg	3.7	<0.1	<0.1	0.6	<0.1
Chrysene	mg/kg	4.6	0.1	<0.1	0.5	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	11	0.4	<0.2	0.9	<0.2
Benzo(a)pyrene	mg/kg	7.6	0.2	0.06	0.56	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	8.1	0.2	<0.1	0.4	<0.1
Dibenzo(a,h)anthracene	mg/kg	2.2	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	10	0.3	<0.1	0.6	<0.1
Total +ve PAH's	mg/kg	69	1.7	0.51	9.3	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	12	<0.5	<0.5	0.8	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	12	<0.5	<0.5	0.8	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	12	<0.5	<0.5	0.9	<0.5
Surrogate p-Terphenyl-d14	%	95	75	84	81	82

PAHs in Soil						
Our Reference		240645-56	240645-57	240645-58	240645-59	240645-60
Your Reference	UNITS	106A/0.25	106A/0.35	106A/0.5	407/0.28	411/0.01
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/04/2020	16/04/2020	14/04/2020	16/04/2020	16/04/2020
Date analysed	-	16/04/2020	16/04/2020	14/04/2020	16/04/2020	16/04/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	1.4	0.2
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	8.6	2.0
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.8	0.3
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	17	9.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	9.8	2.2
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	110	50
Pyrene	mg/kg	<0.1	<0.1	<0.1	110	40
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	110	9.0
Chrysene	mg/kg	<0.1	<0.1	<0.1	80	9.7
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	90	13
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	90	8.5
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	40	8.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	3.9	2.3
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	35	7.4
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	710	160
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	120	14
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	120	14
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	120	14
Surrogate p-Terphenyl-d14	%	95	92	81	121	97

PAHs in Soil						
Our Reference		240645-61	240645-62	240645-63	240645-64	240645-65
Your Reference	UNITS	412/0.15	413/0.15	D1/JPS	D3/JPS	301/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.6	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	0.3
Pyrene	mg/kg	0.1	0.2	<0.1	<0.1	0.3
Benzo(a)anthracene	mg/kg	<0.1	0.6	<0.1	<0.1	0.2
Chrysene	mg/kg	0.1	0.5	<0.1	<0.1	0.2
Benzo(b,j+k)fluoranthene	mg/kg	0.3	3.6	<0.2	<0.2	0.6
Benzo(a)pyrene	mg/kg	0.2	2.2	<0.05	<0.05	0.3
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	3.2	<0.1	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.9	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	3.9	<0.1	<0.1	0.3
Total +ve PAH's	mg/kg	1.4	16	<0.05	<0.05	2.6
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	3.9	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	3.9	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	3.9	<0.5	<0.5	0.5
Surrogate p-Terphenyl-d14	%	81	86	74	66	86

PAHs in Soil						
Our Reference		240645-66	240645-67	240645-68	240645-69	240645-70
Your Reference	UNITS	301/2	301A/2	303/1	303/2	304/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	0.2	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.5	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.3	<0.05	0.2	0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	<0.1	0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	2.3	<0.05	1.3	0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	86	88	87	87	85

PAHs in Soil						
Our Reference		240645-71	240645-72	240645-73	240645-74	240645-75
Your Reference	UNITS	306/1	306/2	307/1	307/2	D7/JPS
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.3	<0.1	<0.1	0.1
Benzo(a)anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	1	<0.2	<0.2	0.3
Benzo(a)pyrene	mg/kg	<0.05	0.62	<0.05	<0.05	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.5	<0.1	<0.1	0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.6	<0.1	<0.1	0.1
Total +ve PAH's	mg/kg	<0.05	4.1	<0.05	<0.05	0.79
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.9	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.9	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.9	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	85	85	83	86	84

Organochlorine Pesticides in soil						
Our Reference		240645-1	240645-2	240645-3	240645-4	240645-5
Your Reference	UNITS	B1-1	B1-2	B1-3	B1-4	B2-1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.1	0.2	2.4	1.5	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	71	76	80	81	83

Organochlorine Pesticides in soil					_	
Our Reference		240645-6	240645-7	240645-8	240645-9	240645-10
Your Reference	UNITS	B2-2	B2-3	B2-4	B3-1	B3-2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	83	86	82	83	86

Organochlorine Pesticides in soil						
Our Reference		240645-11	240645-12	240645-13	240645-14	240645-15
Your Reference	UNITS	B3-3	B3-4	B4-1	B4-2	B4-3
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	80	88	85	85

Organochlorine Pesticides in soil						
Our Reference		240645-16	240645-17	240645-18	240645-19	240645-20
Your Reference	UNITS	B4-4	B5-1	B5-2	B5-3	B5-4
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	73	71	80	72	76

Organochlorine Pesticides in soil					_	
Our Reference		240645-21	240645-22	240645-23	240645-24	240645-25
Your Reference	UNITS	B6-1	B6-2	B6-3	B6-4	B7-1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	79	78	78	79	74

Organochlorine Pesticides in soil						
Our Reference		240645-26	240645-27	240645-28	240645-29	240645-30
Your Reference	UNITS	B7-2	B7-3	B7-4	B8-1	B8-2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	74	77	75	71	73

Organochlorine Pesticides in soil						
Our Reference		240645-31	240645-32	240645-33	240645-34	240645-35
Your Reference	UNITS	B8-3	B8-4	B9-1	B9-2	B9-3
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Surrogate TCMX	%	89	70	73	121	70

Organochlorine Pesticides in soil						
Our Reference		240645-36	240645-37	240645-38	240645-39	240645-40
Your Reference	UNITS	B9-4	B10-1	B10-2	B10-3	B10-4
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	75	71	69	68	72

Organochlorine Pesticides in soil						
Our Reference		240645-47	240645-48	240645-49	240645-50	240645-65
Your Reference	UNITS	D1/JRK	D2/JRK	D3/JRK	D4/JRK	301/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	76	72	75	72	80

Organochlorine Pesticides in soil						
Our Reference		240645-66	240645-67	240645-68	240645-69	240645-70
Your Reference	UNITS	301/2	301A/2	303/1	303/2	304/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	84	78	77	72

Organochlorine Pesticides in soil						
Our Reference		240645-71	240645-72	240645-73	240645-74	240645-75
Your Reference	UNITS	306/1	306/2	307/1	307/2	D7/JPS
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	76	77	73	76	74

Organophosphorus Pesticides in Soil						
Our Reference		240645-1	240645-2	240645-3	240645-4	240645-5
Your Reference	UNITS	B1-1	B1-2	B1-3	B1-4	B2-1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	71	76	80	81	83

Organophosphorus Pesticides in Soil						
Our Reference		240645-6	240645-7	240645-8	240645-9	240645-10
Your Reference	UNITS	B2-2	B2-3	B2-4	B3-1	B3-2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	83	86	82	83	86

Organophosphorus Pesticides in Soil						
Our Reference		240645-11	240645-12	240645-13	240645-14	240645-15
Your Reference	UNITS	B3-3	B3-4	B4-1	B4-2	B4-3
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	80	88	85	85

Organophosphorus Pesticides in Soil						
Our Reference		240645-16	240645-17	240645-18	240645-19	240645-20
Your Reference	UNITS	B4-4	B5-1	B5-2	B5-3	B5-4
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	73	71	80	72	76

Organophosphorus Pesticides in Soil						
Our Reference		240645-21	240645-22	240645-23	240645-24	240645-25
Your Reference	UNITS	B6-1	B6-2	B6-3	B6-4	B7-1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	79	78	78	79	74

Organophosphorus Pesticides in Soil						
Our Reference		240645-26	240645-27	240645-28	240645-29	240645-30
Your Reference	UNITS	B7-2	B7-3	B7-4	B8-1	B8-2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	74	77	75	71	73

Organophosphorus Pesticides in Soil						
Our Reference		240645-31	240645-32	240645-33	240645-34	240645-35
Your Reference	UNITS	B8-3	B8-4	B9-1	B9-2	B9-3
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	70	73	121	70

Organophosphorus Pesticides in Soil						
Our Reference		240645-36	240645-37	240645-38	240645-39	240645-40
Your Reference	UNITS	B9-4	B10-1	B10-2	B10-3	B10-4
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	75	71	69	68	72

Organophosphorus Pesticides in Soil						
Our Reference		240645-47	240645-48	240645-49	240645-50	240645-65
Your Reference	UNITS	D1/JRK	D2/JRK	D3/JRK	D4/JRK	301/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	76	72	75	72	80

Organophosphorus Pesticides in Soil						
Our Reference		240645-66	240645-67	240645-68	240645-69	240645-70
Your Reference	UNITS	301/2	301A/2	303/1	303/2	304/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	78	84	78	77	72

Organophosphorus Pesticides in Soil						
Our Reference		240645-71	240645-72	240645-73	240645-74	240645-75
Your Reference	UNITS	306/1	306/2	307/1	307/2	D7/JPS
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	76	77	73	76	74

PCBs in Soil						
Our Reference		240645-65	240645-66	240645-67	240645-68	240645-69
Your Reference	UNITS	301/1	301/2	301A/2	303/1	303/2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	78	84	78	77

PCBs in Soil						
Our Reference		240645-70	240645-71	240645-72	240645-73	240645-74
Your Reference	UNITS	304/1	306/1	306/2	307/1	307/2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	72	76	77	73	76

PCBs in Soil		
Our Reference		240645-75
Your Reference	UNITS	D7/JPS
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	14/04/2020
Date analysed	-	14/04/2020
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	74

			-			
Acid Extractable metals in soil						
Our Reference		240645-1	240645-2	240645-3	240645-4	240645-5
Your Reference	UNITS	B1-1	B1-2	B1-3	B1-4	B2-1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Lead	mg/kg	21	57	24	36	63
Acid Extractable metals in soil						
Our Reference		240645-6	240645-7	240645-8	240645-17	240645-18
Your Reference	UNITS	B2-2	B2-3	B2-4	B5-1	B5-2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Lead	mg/kg	68	24	76	53	10
Acid Extractable metals in soil					_	
Our Reference		240645-19	240645-20	240645-21	240645-22	240645-23
Your Reference	UNITS	B5-3	B5-4	B6-1	B6-2	B6-3
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Lead	mg/kg	39	2	25	13	8
Acid Extractable metals in soil						
Our Reference		240645-24	240645-29	240645-30	240645-31	240645-32
Your Reference	UNITS	B6-4	B8-1	B8-2	B8-3	B8-4
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Lead	mg/kg	19	10	210	36	19

Acid Extractable metals in soil						
Our Reference		240645-48	240645-50	240645-65	240645-66	240645-67
Your Reference	UNITS	D2/JRK	D4/JRK	301/1	301/2	301A/2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Arsenic	mg/kg	[NA]	[NA]	8	9	5
Cadmium	mg/kg	[NA]	[NA]	<0.4	<0.4	<0.4
Chromium	mg/kg	[NA]	[NA]	10	8	12
Copper	mg/kg	[NA]	[NA]	57	44	39
Lead	mg/kg	63	61	12	10	12
Mercury	mg/kg	[NA]	[NA]	<0.1	<0.1	<0.1
Nickel	mg/kg	[NA]	[NA]	20	13	11
Zinc	mg/kg	[NA]	[NA]	290	250	120
Manganese	mg/kg	[NA]	[NA]	340	260	270
Iron	mg/kg	[NA]	[NA]	20,000	17,000	10,000
Aluminium	mg/kg	[NA]	[NA]	8,600	6,700	6,600
Selenium	mg/kg	[NA]	[NA]	<2	<2	<2
Acid Extractable metals in soil						
Our Reference		240645-68	240645-69	240645-70	240645-71	240645-72
Your Reference	UNITS	303/1	303/2	304/1	306/1	306/2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Arsenic	mg/kg	6	6	<4	6	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	6	5	21	15
Copper	mg/kg	8	23	19	28	50
Lead	mg/kg	2	4	6	15	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	7	5	18	14
Zinc	mg/kg	42	120	120	73	150
Manganese	mg/kg	67	110	91	460	320
1						
Iron	mg/kg	4,600	8,000	6,600	23,000	18,000
-	mg/kg mg/kg	4,600 1,900	8,000 3,300	6,600 3,000	23,000 18,000	18,000 11,000

Acid Extractable metals in soil				
Our Reference		240645-73	240645-74	240645-75
Your Reference	UNITS	307/1	307/2	D7/JPS
Date Sampled		07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020
Arsenic	mg/kg	<4	<4	11
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	38	33	11
Copper	mg/kg	16	14	52
Lead	mg/kg	7	10	8
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	40	32	15
Zinc	mg/kg	25	30	210
Manganese	mg/kg	240	270	220
Iron	mg/kg	25,000	36,000	20,000
Aluminium	mg/kg	15,000	12,000	7,000
Selenium	mg/kg	<2	<4	<2

Misc Soil - Inorg						
Our Reference		240645-51	240645-52	240645-53	240645-54	240645-55
Your Reference	UNITS	401/0.05	401/0.15	402/0.4	404/0.2	406/0.35
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		240645-56	240645-57	240645-58	240645-59	240645-60
Your Reference	UNITS	106A/0.25	106A/0.35	106A/0.5	407/0.28	411/0.01
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		240645-61	240645-62	240645-63	240645-64	240645-65
Your Reference	UNITS	412/0.15	413/0.15	D1/JPS	D3/JPS	301/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		240645-66	240645-67	240645-68	240645-69	240645-70
Your Reference	UNITS	301/2	301A/2	303/1	303/2	304/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		240645-71	240645-72	240645-73	240645-74	240645-75
Your Reference	UNITS	306/1	306/2	307/1	307/2	D7/JPS
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Moisture						
Our Reference		240645-1	240645-2	240645-3	240645-4	240645-5
Your Reference	UNITS	B1-1	B1-2	B1-3	B1-4	B2-1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	9.7	11	11	15	22
Moisture						
Our Reference		240645-6	240645-7	240645-8	240645-9	240645-10
Your Reference	UNITS	B2-2	B2-3	B2-4	B3-1	B3-2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	26	27	19	12	22
Moisture	1		1			
Our Reference		240645-11	240645-12	240645-13	240645-14	240645-15
Your Reference	UNITS	B3-3	B3-4	B4-1	B4-2	B4-3
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	22	18	26	31	19
Moisture						
Our Reference		240645-16	240645-17	240645-18	240645-19	240645-20
Your Reference	UNITS	B4-4	B5-1	B5-2	B5-3	B5-4
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	30	34	31	49	12
Moisture						
Our Reference		240645-21	240645-22	240645-23	240645-24	240645-25
Your Reference	UNITS	B6-1	B6-2	B6-3	B6-4	B7-1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	46	53	12	37	24

Moisture						
Our Reference		240645-26	240645-27	240645-28	240645-29	240645-30
Your Reference	UNITS	B7-2	B7-3	B7-4	B8-1	B8-2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	27	23	56	37	62
Moisture		·				
Our Reference		240645-31	240645-32	240645-33	240645-34	240645-35
Your Reference	UNITS	B8-3	B8-4	B9-1	B9-2	B9-3
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	61	27	18	68	41
Moisture			1			
Our Reference		240645-36	240645-37	240645-38	240645-39	240645-40
Your Reference	UNITS	B9-4	B10-1	B10-2	B10-3	B10-4
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	23	17	7.3	19	16
Moisture			1	•		•
Our Reference		240645-47	240645-48	240645-49	240645-50	240645-51
Your Reference	UNITS	D1/JRK	D2/JRK	D3/JRK	D4/JRK	401/0.05
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	26	13	24	9.2	16
Moisture						
Our Reference		240645-52	240645-53	240645-54	240645-55	240645-56
Your Reference	UNITS	401/0.15	402/0.4	404/0.2	406/0.35	106A/0.25
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
		4.4/0.4/00000				

14/04/2020

15/04/2020

88

.

-

%

14/04/2020

15/04/2020

20

14/04/2020

15/04/2020

22

14/04/2020

15/04/2020

12

Date prepared

Date analysed

Moisture

14/04/2020

15/04/2020

3.2

Moisture						
Our Reference		240645-57	240645-58	240645-59	240645-60	240645-61
Your Reference	UNITS	106A/0.35	106A/0.5	407/0.28	411/0.01	412/0.15
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	10	9.2	5.9	2.3	17

Moisture						
Our Reference		240645-62	240645-63	240645-64	240645-65	240645-66
Your Reference	UNITS	413/0.15	D1/JPS	D3/JPS	301/1	301/2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	10	11	6.6	11	4.4
Moisture	·	·		-		- -

Our Reference		240645-67	240645-68	240645-69	240645-70	240645-71
Your Reference	UNITS	301A/2	303/1	303/2	304/1	306/1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	12	2.2	4.0	3.7	18

Moisture					
Our Reference		240645-72	240645-73	240645-74	240645-75
Your Reference	UNITS	306/2	307/1	307/2	D7/JPS
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	14/04/2020	14/04/2020	14/04/2020	14/04/2020
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Moisture	%	11	14	21	2.5

Asbestos ID - soils NEPM - ASB-001						
Our Reference		240645-1	240645-2	240645-3	240645-4	240645-17
Your Reference	UNITS	B1-1	B1-2	B1-3	B1-4	B5-1
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/04/2020	16/04/2020	16/04/2020	16/04/2020	16/04/2020
Sample mass tested	g	714.84	729.17	723.2	719.26	812.66
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		240645-18	240645-19	240645-20	240645-21	240645-22
Your Reference	UNITS	B5-2	B5-3	B5-4	B6-1	B6-2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/04/2020	16/04/2020	16/04/2020	16/04/2020	16/04/2020
Sample mass tested	g	609.16	491.54	1,253.45	389.85	390.18
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		240645-23	240645-24	240645-29	240645-30	240645-31
Your Reference	UNITS	B6-3	B6-4	B8-1	B8-2	B8-3
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/04/2020	16/04/2020	16/04/2020	16/04/2020	16/04/2020
Sample mass tested	g	594.93	656.21	452.28	877.72	175.1
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	_	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		240645-32	240645-33	240645-34	240645-35	240645-36
Your Reference	UNITS	B8-4	B9-1	B9-2	B9-3	B9-4
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/04/2020	16/04/2020	16/04/2020	16/04/2020	16/04/2020
Sample mass tested	g	1,001.67	626.21	528.57	661.44	408.62
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	-	-	-	-
FA and AF Estimation*	g	_	-	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		240645-65	240645-66	240645-67	240645-68	240645-69
Your Reference	UNITS	301/1	301/2	301A/2	303/1	303/2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/04/2020	16/04/2020	16/04/2020	16/04/2020	16/04/2020
Sample mass tested	g	407.31	464.57	271.95	476.43	559.36
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	•	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*		No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		240645-70	240645-71	240645-72	240645-73	240645-74
Your Reference	UNITS	304/1	306/1	306/2	307/1	307/2
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/04/2020	16/04/2020	16/04/2020	16/04/2020	16/04/2020
Sample mass tested	g	652.6	488.36	568.86	476.81	435.43
Sample Description	-	Brown fine- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	_	-	_	-
FA and AF Estimation*	g	-	_	-	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - materials					1	
Our Reference		240645-41	240645-42	240645-43	240645-44	240645-45
Your Reference	UNITS	F1/JRK	F2/JRK	F3/JRK	F4/JRK	F5/JRK
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Material	Material	Material	Material	Material
Date analysed	-	15/04/2020	15/04/2020	15/04/2020	15/04/2020	15/04/2020
Mass / Dimension of Sample	-	64x38x5mm	45x30x5mm	65x45x5mm	120x80x5mm	70x45x5mm
Sample Description	-	Grey fibre cement material	Grey fibre cement material	Brown fibre cement material	Beige fibre cement material	Beige fibre cement materia
Asbestos ID in materials	-	Chrysotile asbestos detected	Chrysotile asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
		Amosite asbestos detected Crocidolite	Amosite asbestos detected Crocidolite	Organic fibres detected	Organic fibres detected	Organic fibres detected
		asbestos detected	asbestos detected			
Trace Analysis	-	[NT]	[NT]	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - materials		
Our Reference		240645-46
Your Reference	UNITS	F6/JRK
Date Sampled		07/04/2020
Type of sample		Material
Date analysed	-	15/04/2020
Mass / Dimension of Sample	-	70x75x5mm
Sample Description	-	Beige fibre cement material
Asbestos ID in materials	-	No asbestos detected
		Organic fibres detected
Trace Analysis	-	No asbestos detected

Coal Tar					
Our Reference		240645-51	240645-56	240645-59	240645-60
Your Reference	UNITS	401/0.05	106A/0.25	407/0.28	411/0.01
Date Sampled		07/04/2020	07/04/2020	07/04/2020	07/04/2020
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	20/04/2020	20/04/2020	20/04/2020	20/04/2020
Date analysed	-	20/04/2020	20/04/2020	20/04/2020	20/04/2020
Presence of Coal Tar*	-	Absent	Absent	Absent	Absent

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	 Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" li="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" teq="" teqs="" that="" the="" this="" to=""> 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql "total="" +ve="" a="" above.="" and="" approaches="" are="" between="" conservative="" half="" hence="" individual="" is="" least="" li="" lowest="" mid-point="" most="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql.="" reflective="" simply="" stipulated="" sum="" the="" therefore="" total=""> </pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
RTA T542	Determination of Phenol in core samples as per RTA test method T542. This procedure gives and indication of whether a sample of asphalt has been made with coal tar. The coal tar method gives an approximate result with a high degree of uncertainty.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	240645-52		
Date extracted	-			14/04/2020	51	14/04/2020	14/04/2020		14/04/2020	14/04/2020		
Date analysed	-			15/04/2020	51	15/04/2020	15/04/2020		15/04/2020	15/04/2020		
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	51	<25	<25	0	90	77		
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	51	<25	<25	0	90	77		
Benzene	mg/kg	0.2	Org-016	<0.2	65	<0.2	<0.2	0	80	68		
Toluene	mg/kg	0.5	Org-016	<0.5	65	<0.5	<0.5	0	85	72		
Ethylbenzene	mg/kg	1	Org-016	<1	65	<1	<1	0	94	83		
m+p-xylene	mg/kg	2	Org-016	<2	65	<2	<2	0	95	82		
o-Xylene	mg/kg	1	Org-016	<1	65	<1	<1	0	95	82		
naphthalene	mg/kg	1	Org-014	<1	65	<1	<1	0	[NT]	[NT]		
Surrogate aaa-Trifluorotoluene	%		Org-016	88	51	91	88	3	93	82		

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	240645-66
Date extracted	-			[NT]	65	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			[NT]	65	15/04/2020	15/04/2020		15/04/2020	15/04/2020
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	65	<25	<25	0	90	90
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	65	<25	<25	0	90	90
Benzene	mg/kg	0.2	Org-016	[NT]	75	<0.2	<0.2	0	80	78
Toluene	mg/kg	0.5	Org-016	[NT]	75	<0.5	<0.5	0	84	82
Ethylbenzene	mg/kg	1	Org-016	[NT]	75	<1	<1	0	94	96
m+p-xylene	mg/kg	2	Org-016	[NT]	75	<2	<2	0	95	97
o-Xylene	mg/kg	1	Org-016	[NT]	75	<1	<1	0	96	97
naphthalene	mg/kg	1	Org-014	[NT]	75	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	65	83	79	5	90	92

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	75	14/04/2020	14/04/2020		[NT]	[NT]	
Date analysed	-			[NT]	75	15/04/2020	15/04/2020		[NT]	[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	75	<25	<25	0	[NT]	[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	75	<25	<25	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	75	80	90	12	[NT]	[NT]	
				l						l	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	240645-52
Date extracted	-			14/04/2020	51	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	51	14/04/2020	14/04/2020		14/04/2020	14/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	51	<50	<50	0	100	85
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	51	670	660	2	83	85
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	51	1300	1500	14	108	92
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	51	53	54	2	100	85
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	51	1500	1600	6	83	85
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	51	1400	1700	19	108	92
Surrogate o-Terphenyl	%		Org-003	79	51	103	109	6	96	86

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	240645-66
Date extracted	-			[NT]	65	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			[NT]	65	15/04/2020	15/04/2020		15/04/2020	15/04/2020
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	65	<50	<50	0	87	95
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	65	<100	<100	0	70	77
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	65	110	<100	10	91	74
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	65	<50	<50	0	87	95
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	65	140	110	24	70	77
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	65	110	<100	10	91	74
Surrogate o-Terphenyl	%		Org-003	[NT]	65	90	84	7	81	88

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	75	14/04/2020	14/04/2020		[NT]	
Date analysed	-			[NT]	75	15/04/2020	15/04/2020		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	75	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	75	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	75	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	75	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	75	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	75	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-003	[NT]	75	99	108	9	[NT]	[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	240645-52
Date extracted	-			14/04/2020	51	16/04/2020	16/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	51	16/04/2020	16/04/2020		14/04/2020	14/04/2020
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	51	0.2	<0.1	67	78	84
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	51	1.2	1.7	34	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	51	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	51	<0.1	<0.1	0	88	74
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	51	0.6	0.2	100	94	62
Anthracene	mg/kg	0.1	Org-012/017	<0.1	51	0.4	0.6	40	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	51	8.2	3.2	88	84	74
Pyrene	mg/kg	0.1	Org-012/017	<0.1	51	11	4.4	86	78	68
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	51	3.7	2.4	43	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	51	4.6	3.4	30	100	77
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	51	11	10	10	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	51	7.6	7.5	1	70	72
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	51	8.1	11	30	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	51	2.2	2.8	24	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	51	10	13	26	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	93	51	95	96	1	90	73

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	240645-66
Date extracted	-			[NT]	65	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			[NT]	65	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0	84	82
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0	84	80
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0	96	92
Anthracene	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	65	0.3	0.2	40	88	85
Pyrene	mg/kg	0.1	Org-012/017	[NT]	65	0.3	0.3	0	84	81
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	65	0.2	0.2	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	65	0.2	0.2	0	106	109
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	65	0.6	0.5	18	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	65	0.3	0.3	0	82	65
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	65	0.3	0.2	40	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	65	0.3	0.3	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	65	86	85	1	91	83

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	75	14/04/2020	14/04/2020			[NT]
Date analysed	-			[NT]	75	14/04/2020	14/04/2020			[NT]
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	0.3	100		[NT]
Pyrene	mg/kg	0.1	Org-012/017	[NT]	75	0.1	0.3	100		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	0.2	67		[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	0.2	67		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	75	0.3	0.5	50		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	75	0.2	0.3	40		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	75	0.1	0.2	67		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	75	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	75	0.1	0.2	67		[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	75	84	87	4		[NT]

QUALITY CONTI	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	240645-2
Date extracted	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	86	90
НСВ	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	88	94
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	82	90
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	98	100
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	94	104
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	100
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	1	0.1	0.1	0	96	98
Endrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	76	102
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	80	92
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	74	94
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017	82	1	71	77	8	81	78

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	240645-22
Date extracted	-			[NT]	11	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			[NT]	11	14/04/2020	14/04/2020		14/04/2020	14/04/2020
alpha-BHC	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	114	130
НСВ	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	78	92
gamma-BHC	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	67	66
delta-BHC	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	101	104
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	95	104
gamma-Chlordane	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	95	104
Dieldrin	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	97	110
Endrin	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	71	88
Endosulfan II	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	64	74
Endrin Aldehyde	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	67	88
Methoxychlor	mg/kg	0.1	Org-012/017	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	[NT]	11	87	84	4	80	75

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	240645-66
Date extracted	-			[NT]	21	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			[NT]	21	14/04/2020	14/04/2020		14/04/2020	14/04/2020
alpha-BHC	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	82	82
НСВ	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	70	80
gamma-BHC	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	60	86
delta-BHC	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	96	94
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	92	88
gamma-Chlordane	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	92	90
Dieldrin	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	98	96
Endrin	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	68	84
Endosulfan II	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	62	64
Endrin Aldehyde	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	72	68
Methoxychlor	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	[NT]	21	79	81	2	77	77

QUALITY CON	ITROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	65	14/04/2020	14/04/2020			[NT]
Date analysed	-			[NT]	65	14/04/2020	14/04/2020			[NT]
alpha-BHC	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-012/017	[NT]	65	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017	[NT]	65	80	78	3		[NT]

QUALITY CON	ITROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				75	14/04/2020	14/04/2020			[NT]
Date analysed	-				75	14/04/2020	14/04/2020			[NT]
alpha-BHC	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017		75	74	77	4		[NT]

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	240645-2
Date extracted	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	76	84
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	82	96
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	62	82
Malathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	70	114
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	90	104
Parathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	74	110
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	66	110
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	82	1	71	77	8	81	78

QUALITY CONTRO	L: Organoph	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	240645-22
Date extracted	-				11	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-				11	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Dichlorvos	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	80	82
Dimethoate	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	90	100
Fenitrothion	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	73	86
Malathion	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	86	112
Chlorpyriphos	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	100	114
Parathion	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	87	88
Bromophos-ethyl	mg/kg	0.1	AT-008		11	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	93	112
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017		11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017		11	87	84	4	80	75

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	240645-66
Date extracted	-				21	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-				21	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Dichlorvos	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	80	72
Dimethoate	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	86	84
Fenitrothion	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	76	70
Malathion	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	90	86
Chlorpyriphos	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	98	94
Parathion	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	98	92
Bromophos-ethyl	mg/kg	0.1	AT-008		21	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	92	94
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017		21	79	81	2	77	77

QUALITY CONTRC	L: Organopl	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				65	14/04/2020	14/04/2020			[NT]
Date analysed	-				65	14/04/2020	14/04/2020			[NT]
Dichlorvos	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	AT-008		65	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017		65	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017		65	80	78	3		[NT]

QUALITY CONTRO	DL: Organopł	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				75	14/04/2020	14/04/2020			[NT]
Date analysed	-				75	14/04/2020	14/04/2020			[NT]
Dichlorvos	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	AT-008		75	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017		75	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-012/017		75	74	77	4		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	240645-66
Date extracted	-			14/04/2020	65	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	65	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	65	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	65	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	65	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	65	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	65	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	65	<0.1	<0.1	0	120	120
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	65	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-006	82	65	80	78	3	81	77

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	75	14/04/2020	14/04/2020			
Date analysed	-			[NT]	75	14/04/2020	14/04/2020			
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	75	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	75	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	75	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	75	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	75	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	75	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	75	<0.1	<0.1	0		
Surrogate TCMX	%		Org-006	[NT]	75	74	77	4	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	240645-2	
Date prepared	-			14/04/2020	1	14/04/2020	14/04/2020		14/04/2020	14/04/2020	
Date analysed	-			15/04/2020	1	15/04/2020	15/04/2020		15/04/2020	15/04/2020	
Arsenic	mg/kg	4	Metals-020	<4	65	8	10	22	107	[NT]	
Cadmium	mg/kg	0.4	Metals-020	<0.4	65	<0.4	<0.4	0	99	[NT]	
Chromium	mg/kg	1	Metals-020	<1	65	10	11	10	113	[NT]	
Copper	mg/kg	1	Metals-020	<1	65	57	67	16	112	[NT]	
Lead	mg/kg	1	Metals-020	<1	1	21	22	5	110	79	
Mercury	mg/kg	0.1	Metals-021	<0.1	65	<0.1	<0.1	0	[NT]	[NT]	
Nickel	mg/kg	1	Metals-020	<1	65	20	19	5	104	[NT]	
Zinc	mg/kg	1	Metals-020	<1	65	290	300	3	114	[NT]	
Manganese	mg/kg	1	Metals-020	<1	65	340	340	0	101	[NT]	
Iron	mg/kg	10	Metals-020	<10	65	20000	23000	14	122	[NT]	
Aluminium	mg/kg	10	Metals-020	<10	65	8600	8600	0	94	[NT]	
Selenium	mg/kg	2	Metals-020	<2	65	<2	<2	0	101	[NT]	

QUALITY CONTROL: Acid Extractable metals in soil						Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	240645-22	
Date prepared	-			[NT]	21	14/04/2020	14/04/2020		14/04/2020	14/04/2020	
Date analysed	-			[NT]	21	15/04/2020	15/04/2020		15/04/2020	15/04/2020	
Arsenic	mg/kg	4	Metals-020	[NT]	75	11	15	31	104	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	75	<0.4	<0.4	0	103	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	75	11	12	9	109	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	75	52	43	19	104	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	21	25	26	4	115	96	
Mercury	mg/kg	0.1	Metals-021	[NT]	75	<0.1	<0.1	0	83	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	75	15	11	31	107	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	75	210	190	10	112	[NT]	
Manganese	mg/kg	1	Metals-020	[NT]	75	220	180	20	99	[NT]	
Iron	mg/kg	10	Metals-020	[NT]	75	20000	16000	22	117	[NT]	
Aluminium	mg/kg	10	Metals-020	[NT]	75	7000	5300	28	94	[NT]	
Selenium	mg/kg	2	Metals-020	[NT]	75	<2	<2	0	96	[NT]	

QUALITY CON	TROL: Acid I	Extractabl	e metals in so <u>i</u> l			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	240645-66	
Date prepared	-			[NT]	65	14/04/2020	14/04/2020			14/04/2020	
Date analysed	-			[NT]	65	15/04/2020	15/04/2020			15/04/2020	
Lead	mg/kg	1	Metals-020	[NT]	65	12	13	8		94	
Arsenic	mg/kg	4	Metals-020	[NT]	[NT]		[NT]	[NT]		99	
Cadmium	mg/kg	0.4	Metals-020	[NT]	[NT]		[NT]	[NT]		85	
Chromium	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]		99	
Copper	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]		129	
Mercury	mg/kg	0.1	Metals-021	[NT]	[NT]		[NT]	[NT]		89	
Nickel	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]		101	
Zinc	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]		#	
Manganese	mg/kg	1	Metals-020	[NT]	[NT]		[NT]	[NT]		#	
Iron	mg/kg	10	Metals-020	[NT]	[NT]		[NT]	[NT]		#	
Aluminium	mg/kg	10	Metals-020	[NT]	[NT]		[NT]	[NT]		#	
Selenium	mg/kg	2	Metals-020	[NT]	[NT]		[NT]	[NT]		90	

QUALITY CONTROL: Acid Extractable metals in soil				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	75	14/04/2020	14/04/2020		[NT]	
Date analysed	-			[NT]	75	15/04/2020	15/04/2020		[NT]	
Lead	mg/kg	1	Metals-020	[NT]	75	8	10	22	[NT]	[NT]

QUALITY CONTROL: Misc Soil - Inorg						Duplicate Spike Reco				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	240645-52
Date prepared	-			14/04/2020	51	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			14/04/2020	51	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	51	<5	<5	0	100	100
	CONTROL:	Mico Soi				Dui	olicate		Spiko Bo	covery %
			<u> </u>						· ·	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	240645-66
Date prepared	-			[NT]	65	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Date analysed	-			[NT]	65	14/04/2020	14/04/2020		14/04/2020	14/04/2020
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	[NT]	65	<5	<5	0	100	103
						2			0 1 0	0/
QUALITY	CONTROL:	Misc Soi	I - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	75	14/04/2020	14/04/2020			[NT]
Date analysed	-			[NT]	75	14/04/2020	14/04/2020			[NT]

75

<5

<5

0

Inorg-031

mg/kg

5

Total Phenolics (as Phenol)

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 metals in soil:

- The PQL has been raised for Selenium due to interferences from analytes (other than those being tested) in sample 240645-74. -# Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 240645-21, 22, 29, 31, 36, 65, 66, 67, 68, 69, 73, 74 are below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

PAHs in Soil - The RPD for duplicate results is accepted due to the non homogenous nature of sample 240645-51.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 240645-A

Client Details	
Client	Douglas Partners Newcastle
Attention	Paulo Sebastian
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	91601.03, Muswellbrook
Number of Samples	69 Soil, 6 Material
Date samples received	09/04/2020
Date completed instructions received	24/04/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details							
Date results requested by	01/05/2020						
Date of Issue	30/04/2020						
NATA Accreditation Number 29	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By Loren Bardwell, Senior Chemist Steven Luong, Organics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Metals in TCLP USEPA1311			
Our Reference		240645-A-30	240645-A-62
Your Reference	UNITS	B8-2	413/0.15
Date Sampled		07/04/2020	07/04/2020
Type of sample		Soil	Soil
Date extracted	-	27/04/2020	27/04/2020
Date analysed	-	27/04/2020	27/04/2020
pH of soil for fluid# determ.	pH units	9.1	7.9
pH of soil TCLP (after HCl)	pH units	1.8	1.8
Extraction fluid used	-	1	1
pH of final Leachate	pH units	5.0	5.0
Lead in TCLP	mg/L	<0.03	[NA]

PAHs in TCLP (USEPA 1311)		
Our Reference		240645-A-62
Your Reference	UNITS	413/0.15
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	27/04/2020
Date analysed	-	27/04/2020
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	80

PAHs in water leach		
Our Reference		240645-A-62
Your Reference	UNITS	413/0.15
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	27/04/2020
Date analysed	-	27/04/2020
pH of final Leachate	pH units	7.3
Naphthalene in ASLP	mg/L	<0.001
Acenaphthylene in ASLP	mg/L	<0.001
Acenaphthene in ASLP	mg/L	<0.001
Fluorene in ASLP	mg/L	<0.001
Phenanthrene in ASLP	mg/L	<0.001
Anthracene in ASLP	mg/L	<0.001
Fluoranthene in ASLP	mg/L	<0.001
Pyrene in ASLP	mg/L	<0.001
Benzo(a)anthracene in ASLP	mg/L	<0.001
Chrysene in ASLP	mg/L	<0.001
Benzo(bjk)fluoranthene in ASLP	mg/L	<0.002
Benzo(a)pyrene in ASLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - ASLP	mg/L	<0.001
Dibenzo(a,h)anthracene in ASLP	mg/L	<0.001
Benzo(g,h,i)perylene in ASLP	mg/L	<0.001
Surrogate p-Terphenyl-d ₁₄	%	89

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025 ASLP	ASLP Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONTROL: Metals in TCLP USEPA1311						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			27/04/2020	[NT]		[NT]	[NT]	27/04/2020	
Date analysed	-			27/04/2020	[NT]		[NT]	[NT]	27/04/2020	
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]	[NT]	[NT]	[NT]	91	[NT]

QUALITY CON		Duplicate			Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			27/04/2020	[NT]		[NT]	[NT]	27/04/2020	
Date analysed	-			27/04/2020	[NT]		[NT]	[NT]	27/04/2020	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	108	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	100	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	102	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	106	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	114	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	102	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	92	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	96	[NT]		[NT]	[NT]	95	

QUALITY CONTROL: PAHs in water leach							Duplicate Spike Red			overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			27/04/2020	[NT]		[NT]	[NT]	27/04/2020	
Date analysed	-			27/04/2020	[NT]		[NT]	[NT]	27/04/2020	
Naphthalene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	108	
Acenaphthylene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	100	
Phenanthrene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	102	
Anthracene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	106	
Pyrene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	114	
Benzo(a)anthracene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	102	
Benzo(bjk)fluoranthene in ASLP	mg/L	0.002	Org-022/025 ASLP	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	92	
Indeno(1,2,3-c,d)pyrene - ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in ASLP	mg/L	0.001	Org-022/025 ASLP	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025 ASLP	96	[NT]		[NT]	[NT]	95	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

CERTIFICATE OF ANALYSIS

Work Order	: ES2012239	Page	: 1 of 8
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: MR PAULO SEBASTIAN	Contact	: Customer Services ES
Address	: PO BOX 472 96 HERMITAGE ROAD WEST RYDE NSW, AUSTRALIA 1685	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 02 49609600	Telephone	: +61-2-8784 8555
Project	: 91601.03	Date Samples Received	: 09-Apr-2020 11:35
Order number	: 150084	Date Analysis Commenced	15-Apr-2020
C-O-C number	:	Issue Date	17-Apr-2020 21:17
Sampler	:		NATA
Site	: Muswellbrook		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 4		Accredited for compliance with
No. of samples analysed	: 4		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 8 Work Order : ES2012239 Client : DOUGLAS PARTNERS PTY LTD Project : 91601.03

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	T1/JPS	T2/JPS	T2/JRK	T3/JRK	
	Cli	ient samplii	ng date / time	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	
Compound	CAS Number	LOR	Unit	ES2012239-001	ES2012239-002	ES2012239-003	ES2012239-004	
Compound			-	Result	Result	Result	Result	
EA055: Moisture Content (Dried @	105-110°C)							
Moisture Content		1.0	%	9.8	8.0	23.5	8.2	
EG005(ED093)T: Total Metals by IC								
Aluminium	7429-90-5	50	mg/kg		6370			
Iron	7439-89-6	50	mg/kg		20100			
Manganese	7439-96-5	5	mg/kg		245			
Selenium	7782-49-2	5	mg/kg		<5			
Arsenic	7440-38-2	5	mg/kg		22			
Cadmium	7440-43-9	1	mg/kg		<1			
Chromium	7440-47-3	2	mg/kg		13			
Copper	7440-50-8	5	mg/kg		50			
Lead	7439-92-1	5	mg/kg		11		72	
Nickel	7440-02-0	2	mg/kg		14			
Zinc	7440-66-6	5	mg/kg		246			
EG035T: Total Recoverable Mercu								
Mercury	7439-97-6	0.1	mg/kg		<0.1			
-		0.1	mg/kg		-0.1			
EP066: Polychlorinated Biphenyls Total Polychlorinated biphenyls		0.1	mg/kg		<0.1			
		0.1	mg/kg		-0.1			
EP068A: Organochlorine Pesticide		0.05	malka		<0.05	<0.05	<0.05	
alpha-BHC	319-84-6	0.05	mg/kg					
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg		<0.05	<0.05	< 0.05	
beta-BHC	319-85-7	0.05	mg/kg		<0.05	<0.05	<0.05	
gamma-BHC	58-89-9	0.05	mg/kg		<0.05	<0.05	<0.05	
delta-BHC	319-86-8	0.05	mg/kg		<0.05	<0.05	<0.05	
Heptachlor	76-44-8	0.05	mg/kg		<0.05	<0.05	<0.05	
Aldrin	309-00-2	0.05	mg/kg		<0.05	<0.05	<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg		<0.05	<0.05	<0.05	
^ Total Chlordane (sum)		0.05	mg/kg		<0.05	<0.05	<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg		<0.05	<0.05	<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg		<0.05	<0.05	<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg		<0.05	<0.05	<0.05	
Dieldrin	60-57-1	0.05	mg/kg		<0.05	<0.05	<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg		<0.05	<0.05	<0.05	
Endrin	72-20-8	0.05	mg/kg		<0.05	<0.05	<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg		<0.05	<0.05	<0.05	

Page : 4 of 8 Work Order : ES2012239 Client : DOUGLAS PARTNERS PTY LTD Project : 91601.03

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	T1/JPS	T2/JPS	T2/JRK	T3/JRK	
	Cli	ient samplii	ng date / time	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	
Compound	CAS Number	LOR	Unit	ES2012239-001	ES2012239-002	ES2012239-003	ES2012239-004	
			-	Result	Result	Result	Result	
EP068A: Organochlorine Pestici	des (OC) - Continued							
^ Endosulfan (sum)	115-29-7	0.05	mg/kg		<0.05	<0.05	<0.05	
4.4`-DDD	72-54-8	0.05	mg/kg		<0.05	<0.05	<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg		<0.05	<0.05	<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg		<0.05	<0.05	<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg		<0.2	<0.2	<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg		<0.05	<0.05	<0.05	
Methoxychlor	72-43-5	0.2	mg/kg		<0.2	<0.2	<0.2	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg		<0.05	<0.05	<0.05	
Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg		<0.05	<0.05	<0.05	
	0-2							
EP068B: Organophosphorus Pes								
Dichlorvos	62-73-7	0.05	mg/kg		<0.05	<0.05	<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg		<0.05	<0.05	<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg		<0.2	<0.2	<0.2	
Dimethoate	60-51-5	0.05	mg/kg		<0.05	<0.05	<0.05	
Diazinon	333-41-5	0.05	mg/kg		<0.05	<0.05	<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg		<0.05	<0.05	<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg		<0.2	<0.2	<0.2	
Malathion	121-75-5	0.05	mg/kg		<0.05	<0.05	<0.05	
Fenthion	55-38-9	0.05	mg/kg		<0.05	<0.05	<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg		<0.05	<0.05	<0.05	
Parathion	56-38-2	0.2	mg/kg		<0.2	<0.2	<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg		<0.05	<0.05	<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg		<0.05	<0.05	<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg		<0.05	<0.05	<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg		<0.05	<0.05	<0.05	
Prothiofos	34643-46-4	0.05	mg/kg		<0.05	<0.05	<0.05	
Ethion	563-12-2	0.05	mg/kg		<0.05	<0.05	<0.05	
Carbophenothion	786-19-6	0.05	mg/kg		<0.05	<0.05	<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg		<0.05	<0.05	<0.05	
EP075(SIM)A: Phenolic Compou	nds							
Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5			
2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5			
2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5			
3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1			

Page : 5 of 8 Work Order : ES2012239 Client : DOUGLAS PARTNERS PTY LTD Project : 91601.03

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	T1/JPS	T2/JPS	T2/JRK	T3/JRK	
	Cli	ent sampli	ng date / time	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	
Compound	CAS Number	LOR	Unit	ES2012239-001	ES2012239-002	ES2012239-003	ES2012239-004	
				Result	Result	Result	Result	
EP075(SIM)A: Phenolic Compounds - C	ontinued							
2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5			
2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5			
2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5			
2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5			
4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5			
2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5			
2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5			
Pentachlorophenol	87-86-5	2	mg/kg	<2	<2			
EP075(SIM)B: Polynuclear Aromatic Hy	/drocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5			
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5			
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5			
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5			
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5			
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5			
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5			
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5			
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5			
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5			
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5			
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5			
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5			
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5			
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5			
^ Sum of polycyclic aromatic hydrocarbons	3	0.5	mg/kg	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5			
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6			
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2			
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10			
C10 - C14 Fraction		50	mg/kg	<50	<50			
C15 - C28 Fraction		100	mg/kg	<100	<100			
C29 - C36 Fraction		100	mg/kg	<100	<100			

Page : 6 of 8 Work Order : ES2012239 Client : DOUGLAS PARTNERS PTY LTD Project : 91601.03

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	T1/JPS	T2/JPS	T2/JRK	T3/JRK	
	Cli	ient sampli	ng date / time	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	
Compound	CAS Number	LOR	Unit	ES2012239-001	ES2012239-002	ES2012239-003	ES2012239-004	
			-	Result	Result	Result	Result	
EP080/071: Total Petroleum Hydro	carbons - Continued							
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50			
EP080/071: Total Recoverable Hyd	rocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10			
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10			
(F1)	-							
>C10 - C16 Fraction		50	mg/kg	<50	<50			
>C16 - C34 Fraction		100	mg/kg	<100	<100			
>C34 - C40 Fraction		100	mg/kg	<100	<100			
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50			
^ >C10 - C16 Fraction minus Naphthale	ene	50	mg/kg	<50	<50			
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2			
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5			
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5			
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2			
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5			
Naphthalene	91-20-3	1	mg/kg	<1	<1			
EP066S: PCB Surrogate								
Decachlorobiphenyl	2051-24-3	0.1	%		76.4			
EP068S: Organochlorine Pesticide	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%		104	98.2	96.3	
EP068T: Organophosphorus Pesti								
DEF	78-48-8	0.05	%		107	107	100	
EP075(SIM)S: Phenolic Compound								1
Phenol-d6	13127-88-3	0.5	%	83.1	86.2			
2-Chlorophenol-D4	93951-73-6	0.5	%	81.0	86.0			
2.4.6-Tribromophenol	118-79-6	0.5	%	48.7	80.8			
•	110-79-0	0.0	70		00.0			
EP075(SIM)T: PAH Surrogates		0.5	0/	0.00	404			
2-Fluorobiphenyl	321-60-8	0.5	%	90.6	104			
Anthracene-d10	1719-06-8	0.5	%	90.5	94.4			
4-Terphenyl-d14	1718-51-0	0.5	%	91.3	102			

Page : 7 of 8 Work Order : ES2012239 Client : DOUGLAS PARTNERS PTY LTD Project : 91601.03

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	T1/JPS	T2/JPS	T2/JRK	T3/JRK	
	Cli	ent sampli	ng date / time	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	07-Apr-2020 00:00	
Compound	CAS Number	LOR	Unit	ES2012239-001	ES2012239-002	ES2012239-003	ES2012239-004	
				Result	Result	Result	Result	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	107	109			
Toluene-D8	2037-26-5	0.2	%	115	123			
4-Bromofluorobenzene	460-00-4	0.2	%	100	112			

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	y Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surroga	ate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Sur	rogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surroga	ates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

QUALITY CONTROL REPORT

Work Order	: ES2012239	Page	: 1 of 12	
Client	: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division	Sydney
Contact	: MR PAULO SEBASTIAN	Contact	: Customer Services ES	
Address	: PO BOX 472 96 HERMITAGE ROAD WEST RYDE NSW, AUSTRALIA 1685	Address	: 277-289 Woodpark Roa	d Smithfield NSW Australia 2164
Telephone	: +61 02 49609600	Telephone	: +61-2-8784 8555	
Project	: 91601.03	Date Samples Received	: 09-Apr-2020	SMIIII.
Order number	: 150084	Date Analysis Commenced	15-Apr-2020	
C-O-C number	:	Issue Date	17-Apr-2020	
Sampler				Hac-MRA NATA
Site	: Muswellbrook			
Quote number	: EN/222			Accreditation No. 825
No. of samples received	: 4			Accredited for compliance with
No. of samples analysed	: 4			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
G005(ED093)T: Tot	tal Metals by ICP-AES	(QC Lot: 2968500)								
ES2012370-047	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	22	20	8.09	0% - 50%	
		EG005T: Nickel	7440-02-0	2	mg/kg	13	14	0.00	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	10	12	12.9	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	16	17	7.25	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	19	19	0.00	No Limit	
		EG005T: Manganese	7439-96-5	5	mg/kg	1380	1300	6.16	0% - 20%	
	EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	37	38	0.00	No Limit	
		EG005T: Aluminium	7429-90-5	50	mg/kg	10300	10700	4.18	0% - 20%	
		EG005T: Iron	7439-89-6	50	mg/kg	44600	41200	7.84	0% - 20%	
ES2012239-002	T2/JPS	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	13	12	0.00	No Limit	
		EG005T: Nickel	7440-02-0	2	mg/kg	14	13	0.00	No Limit	
		EG005T: Arsenic	7440-38-2	5	mg/kg	22	22	0.00	No Limit	
		EG005T: Copper	7440-50-8	5	mg/kg	50	41	20.1	No Limit	
		EG005T: Lead	7439-92-1	5	mg/kg	11	11	0.00	No Limit	
		EG005T: Manganese	7439-96-5	5	mg/kg	245	244	0.00	0% - 20%	
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit	
		EG005T: Zinc	7440-66-6	5	mg/kg	246	213	14.4	0% - 20%	
		EG005T: Aluminium	7429-90-5	50	mg/kg	6370	5740	10.4	0% - 20%	
		EG005T: Iron	7439-89-6	50	mg/kg	20100	19000	5.66	0% - 20%	
A055: Moistur <u>e Co</u>	ntent (Dried @ 105-110	°C) (QC Lot: 2968503)								
ES2012370-002	Anonymous	EA055: Moisture Content		0.1	%	6.2	2.8	74.8	No Limit	
ES2012370-055	Anonymous	EA055: Moisture Content		0.1	%	19.3	19.6	1.49	0% - 50%	

Page	: 3 of 12
Work Order	ES2012239
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 91601.03

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (Dried @ 105-110								
ES2012141-001	Anonymous	EA055: Moisture Content		0.1	%	15.3	12.8	17.5	0% - 20%
ES2012381-010	Anonymous	EA055: Moisture Content		0.1	%	14.6	14.6	0.00	0% - 20%
EG035T: Total Reco	overable Mercury by FIM	MS (QC Lot: 2968501)							
ES2012370-051	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES2012239-002	T2/JPS	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP066: Polvchlorina	ated Biphenyls (PCB)(0.0		1		
ES2012401-001	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES2012239-002	T2/JPS	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP068A: Organochl	orine Pesticides (OC) (
ES2012401-001	Anonymous	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
	,	EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	0.08	0.08	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
ES2012239-002	T2/JPS	EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit

Page : 4 of 12 Work Order : ES2012239 Client : DOUGLAS PARTNERS PTY LTD Project : 91601.03

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP068A: Organochlo	orine Pesticides (OC) (Q	C Lot: 2968515) - continued									
ES2012239-002	T2/JPS	EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
EP068B: Organopho	sphorus Pesticides (OP)								1		
ES2012401-001	Anonymous	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit		
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit		
		EP068: Dimethoate	60-51-5	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Diazinon	333-41-5	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit		
		EP068: Malathion	121-75-5	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Fenthion	55-38-9	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Ethion	563-12-2	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
ES2012239-002	T2/JPS	EP068: Dichlorvos	62-73-7	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
202012200 002		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Dimethoate	60-51-5	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit		
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Malathion	121-75-5	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit		
		EP068: Fenthion	55-38-9	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit		
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit		

Page : 5 of 12 Work Order : ES2012239 Client : DOUGLAS PARTNERS PTY LTD Project : 91601.03

EP058B: Organophosphorus Positicides (OP) (OC Lot: 39853) Continued 470-90-6 0.05 mg/kg <0.05	Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	•	
EP6058: Organophosphone Petatoles (OP) (OC Lot: 286519) - continued Section 2000 Response Schedmannphose and Market Assection Section 2000 Response Assection Addata Assection Section 2000 Response Assection Addata Assection Section 2000 Response Assection Section 2000 Response Assection Section 2000 Response Assection Section 2000 Response Assection 2000<	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP074 Simulay ethyl 480-74-86 0.05 mg/bg -0.06 -0.06 0.00 No.Linit EP086 Frammalyos 2222-422 0.05 mg/bg -0.06 -0.06 0.00 No.Linit EP086 Frammalyos 2222-422 0.05 mg/bg -0.05 -0.06 0.00 No.Linit EP086 Frammalyos 200-75 0.005 mg/bg -0.05 -0.06 0.00 No.Linit EP086 Canceptentation 763-542 0.05 mg/bg -0.05 -0.06 0.00 No.Linit EP086 Standardot 6023-224 0.2 mg/bg -0.02 -0.02 0.00 No.Linit EP086 Standardot 6023-224 0.2 mg/bg -0.02 -0.02 0.00 No.Linit EP086 Standardot 6024-2 0.2 mg/bg -0.2 -0.2 0.00 No.Linit EP075(SM) Prend 108-57-3 0.5 mg/bg -0.5 -0.00 No.Linit EP075(SM) Prend 108-57-5 0.5 mg/bg<	EP068B: Organopho	sphorus Pesticides (O		·						
EPORE: Fearinghes 22224026 0.00 mg/g 40.05 40.05 0.00 No.Linit EPORE: Fearinghes 364/44-0 0.05 mg/g 40.05 <t< td=""><td>ES2012239-002</td><td>T2/JPS</td><td>EP068: Chlorfenvinphos</td><td>470-90-6</td><td>0.05</td><td>mg/kg</td><td><0.05</td><td><0.05</td><td>0.00</td><td>No Limit</td></t<>	ES2012239-002	T2/JPS	EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
EPD6E Pennampine 22242426 0.00 Prolip 0.000 No.Limit P006E Prolip 364344 0.05 Prolip 0.000 No.Limit P006E Prolip Self-12 Prolip -0.05 Prolip -0.05 0.00 No.Limit P006E Prolip Self-12 Prolip -0.05 Prolip -0.05 0.00 No.Limit P007E Prolip Prolip Self-12 Prolip -0.00 No.Limit EP07E Prolip Prolip Prolip Prolip -0.00 No.Limit EP07E Prolip Prolip Self-12 Prolip -0.00 No.Limit EP07E Prolip Self-12			EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
EP081: Ethon 563-12 0 mgkg 40.05 mgkg 40.05 40.05 40.00 No.Limit EP083: Catophenothin 780.149 0.05 mgkg 40.05				22224-92-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
EP098 Catophynolian 786 49 0.05 mg/g 4.0.65 4.0.05 0.00 No Limit EP088 Minorotophas 6023-224 0.2 mg/g -0.2 -0.2 0.00 No Limit EP088 Minorotophas 6023-224 0.2 mg/g -0.2 -0.2 0.00 No Limit EP088 Minorotophas 6023-224 0.2 mg/g -0.2 -0.2 0.00 No Limit EP075(SIM): 2-Minophan1 98-38.2 0.2 mg/g -0.2 -0.00 No Limit EP075(SIM): 2-Minophan1 99-54 0.5 mg/g -0.5 -0.00 No Limit EP075(SIM): 2-Minophan1 95-54 0.5 mg/g -0.5 -0.00 No Limit EP075(SIM): 2-Minophan1 95-54 0.5 mg/g -0.5 -0.00 No Limit EP075(SIM): 2-Minophan1 105-54 0.5 mg/g -0.5 -0.00 No Limit EP075(SIM): 2-Minophan1 105-54 0.5 mg/g			EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
EP088 Adaptos Methyl 66.00 0.00 mg/kg 4.0.00 4.0.00 No.Limit EP088 Adaptos Methyl 280.00 0.02 mg/kg 4.0.2 4.0.2 0.00 No.Limit EP088 Partition methyl 280.00 0.2 mg/kg 4.0.2 4.0.2 0.00 No.Limit EP088 Partition methyl 280.00 0.2 mg/kg 4.0.2 4.0.2 0.00 No.Limit EP075(SIM)2-PhonolC Compounds (OC Lot 205287 EP075(SIM)2-PhonolPhong 95574 0.5 mg/kg 40.5 4.0.5 4.0.5 No.Limit EP075(SIM)2-PhonolPhong 95574 0.5 mg/kg 4.0.5 4.0.5 4.0.5 No.Limit EP075(SIM)2-2-Methylphanal 96477 0.5 mg/kg 4.0.5 4.0.5 4.0.5 No.Limit EP075(SIM)2-2-Methylphanal 96474 0.5 mg/kg 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 4.0.5 <td< td=""><td></td><td></td><td>EP068: Ethion</td><td>563-12-2</td><td>0.05</td><td>mg/kg</td><td><0.05</td><td><0.05</td><td>0.00</td><td>No Limit</td></td<>			EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
EP088 Remonscriptions 6623-24 (28 Monocription) 20.2 (28 Monocription) 0.0.2 (20 Moli Million) 0.0.0 (20 Moli Million) EP074[SM]A: Phenolic Compounds (CC Lot 289573 EP075[SMI): Phenol 108.952 0.0.0 Moli million ES012401:001 Anonymous EP075[SMI): Phenol 108.957.6 0.5 mg/kg -0.5 0.00 Moli million ES012401:001 Anonymous EP075[SMI): 2-Monophenol 95.47 0.5 mg/kg -0.5 0.00 Moli million ES012401:001 Anonymous EP075[SMI): 2-Monophenol 95.47 0.5 mg/kg -0.5 0.00 Moli million ES012401:001 EP075[SMI): 2-Monophenol 89.47 0.5 mg/kg -0.5 0.00 Moli million EP075[SMI]: 2-Monophenol 69.45 0.5 mg/kg -0.5 0.00 Moli million EP075[SMI]: 2-Monophenol 69.45 0.5 mg/kg -0.5 0.00 Moli million EP075[SMI]: 2-Monophenol 69.45 0.5 mg/kg -0.5 0.00 Moli million <			EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
EP088 Paratison methyl 298-00-0 0.2 mg/g 4-0.2 4-0.2 0.00 No Limit EP088. Paratison 56-38-2 0.0 mg/g 4-0.2 4-0.2 0.00 No Limit EE075(311/2-248843) EP075(5111/2-Chinorphenal 10.85-2 0.5 mg/g 4-0.5 4-0.5 0.00 No Limit EE0712(311/2-10 10.95-75 0.5 mg/g 4-0.5 4-0.5 0.00 No Limit EP075(5111/2-2016rophenal 96-57 0.5 mg/g 4-0.5 0.00 No Limit EP075(5111/2-2-6-10rophenal 86-75 0.5 mg/g 4-0.5 0.00 No Limit EP075(5111/2-2-6-10 10.96-75 0.5 mg/g 4-0.5 0.00 No Limit EP075(5111/2-6-10 68-07 0.5 mg/g 4-0.5 0.00 No Limit EP075(5111/2-6-10/rophenal 68-07 0.5 mg/g 4-0.5 0.00 No Limit EP075(5111/2-6-10/rophenal 68-06 0.5 mg/g 4-0.5			EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
EP08: Parathon 96-38-2 0.2 mghg 40.2 40.2 0.00 No Limit E9075(SIM) 2-0hono)head 0 98-38-2 0.5 mghg 40.5 40.5 0.00 No Limit E82012401-001 Anonymous EP075(SIM) 2-Chlorophenol 98-48-7 0.5 mghg 40.5 40.5 0.00 No Limit EP075(SIM) 2-Chlorophenol 98-48-7 0.5 mghg 40.5 40.5 0.00 No Limit EP075(SIM) 2-Chlorophenol 98-47-5 0.5 mghg 40.5 40.5 0.00 No Limit EP075(SIM) 2-Chlorophenol 10-64-7 0.5 mghg 40.5 40.5 0.00 No Limit EP075(SIM) 2-Chlorophenol 10-64-7 0.5 mghg 40.5 40.5 0.00 No Limit EP075(SIM) 2-Chlorophenol 84-06-2 0.5 mghg 40.5 40.5 0.00 No Limit EP075(SIM) 2-Chlorophenol 84-06-2 0.5 mghg 40.5 40.5 0.00 No Lim			EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SIM): 2-Diardophenol 08-052 mg/kg <0.5 mg/kg <0.5 <0.00 No Limit ES2012401-001 Anorymous EP075(SIM): 2-Chicrophenol 95-57 0.5 mg/kg <0.5			EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
ES2012401-001 Anonymous EP075(SIM): Phenol 108-95-2 0.5 mg/kg 40.6 40.6 0.00 No Limit EP075(SIM): 2-Chitorophenol 95-57-8 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SIM): 2-Alticryphenol 88-75-5 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SIM): 2-Dimetryphenol 105-67-79 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SIM): 2-Dimetryphenol 105-67-9 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SIM): 2-Dichtorophenol 106-87-9 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SIM): 2-B-Dichtorophenol 88-06-7 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SIM): 2-4-5richtorophenol 98-06-4 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SIM): 2-4-5richtorophenol 98-06-7 0.5 mg/kg 40.5 40.5 <td< td=""><td></td><td></td><td>EP068: Parathion</td><td>56-38-2</td><td>0.2</td><td>mg/kg</td><td><0.2</td><td><0.2</td><td>0.00</td><td>No Limit</td></td<>			EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SM): 2.Chlorophenol 9547-7 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SM): 2.Mitrophenol 9549-7 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SM): 2.Mitrophenol 8775-5 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SM): 2.4-Dichtorophenol 10547-3 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SM): 2.4-Dichtorophenol 10547-4 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SM): 2.4-Dichtorophenol 8746-2 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SM): 2.4-Dichtorophenol 8746-4 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SM): 2.4-Dichtorophenol 8846-4 0.5 mg/kg 40.5 40.5 0.00 No Limit EP075(SM): 2.4-Dichtorophenol 131977-3 1 mg/kg 40.5 40.5 0.00 No Limit E	EP075(SIM)A: Pheno	lic Compounds (QC L	ot: 2968513)							
EP075(SIM): 2-Methylphenol 96.48 0.5 mg/kg <0.5 0.00 No Limit EP075(SIM): 2-4 Dichtorophenol 120-832 0.5 mg/kg -0.5 0.05 0.00 No Limit EP075(SIM): 2-4 Dichtorophenol 876-80 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2-4.5 Trichtorophenol 98-564 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2-4.5 Trichtorophenol 98-564 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2-4.5 Trichtorophenol 98-564 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2-4.5 Trichtorophenol 98-575 0.5 mg/kg -0.5 0.00 No Limit<	ES2012401-001	Anonymous	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
FP075(SM): 2-Metrylphenol 95-44-7 0.5 mg/kg 40.5 40.5 0.00 No Limit FP075(SM): 2-Mitrylphenol 105-7 0.5 mg/kg 40.5 40.5 0.00 No Limit FP075(SM): 2-Mitrylphenol 105-67 0.5 mg/kg 40.5 40.5 0.00 No Limit FP075(SM): 2-Dichlorophenol 87.65 0.5 mg/kg 40.5 40.5 0.00 No Limit FP075(SM): 2-Dichlorophenol 87.67 0.5 mg/kg 40.5 40.5 0.00 No Limit FP075(SM): 2-Dichlorophenol 87.64 0.5 mg/kg 40.5 40.5 0.00 No Limit FP075(SM): 2-Dichlorophenol 87.64 0.5 mg/kg 40.5 40.5 0.00 No Limit FP075(SM): 2-AbsTrichlorophenol 1319-77.3 1 mg/kg 40.5 40.5 0.00 No Limit FP075(SM): 2-Dichlorophenol 65.47 0.5 mg/kg 40.5 40.5 40.5 40.5 40.5 40.5				95-57-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EPO75(SIM): 2-Nitrophenol 88-75-5 0.5 mg/kg <0.5 <0.5 0.00 No Limit EPO75(SIM): 2-4-Dichotophenol 106-67 0.5 mg/kg <0.5				95-48-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
E075(SIM): 2.4-Dimethylphenol 105-79 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2.4-Dichlorophenol 120432 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2.6-Dichlorophenol 59-67 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2.6-Dichlorophenol 69-507 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2.6-Dichlorophenol 88-062 0.5 mg/kg -0.5 0.00 No Limit EP075(SIM): 2.6-Tichlorophenol 88-062 0.5 mg/kg -0.5 -0.5 0.00 No Limit EP075(SIM): 2.6-Tichlorophenol 1319-77.3 1 mg/kg -1 -1 0.00 No Limit E0075(SIM): Pendol 108-952 0.5 mg/kg -0.5 -0.5 0.00 No Limit E0075(SIM): Pendol 95-78 0.5 mg/kg -0.5 -0.5 0.00 No Limit E0075(SIM): 2.4-Dinthylphenol 95-47 0.5 mg/kg -0.5<				88-75-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): 2.4-Dichlorophenol 120.83 0.5 mg/kg <0.5				105-67-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP076(SIM) : 2.6-Dichlorophenol 87-65-0 0.5 mg/kg <0.5 <0.5 <0.00 No Limit EP075(SIM) : 4.2-Chiorop-a-methylphenol 59-07 0.5 mg/kg <0.5				120-83-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): 2.4.6-Trichlorophenol 88-06-2 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): 2.4.5-Trichlorophenol 95-954 0.5 mg/kg <0.5				87-65-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): 2.4.5-Trichlorophenol 95-95.4 0.5 mg/kg <0.5 <0.5 <0.0 No Limit EP075(SIM): 3. & 4-Methylphenol 1319-77.3 1 mg/kg <1			EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): 3: & 4:Methylphenol 1319-77.3 1 mg/kg <1 <1 0.00 No Limit EP075(SIM): 3: & 4:Methylphenol 87:86-5 2 mg/kg <2			EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EDD75(SIM): Pentachlorophenol 87-86-5 2 mg/kg <2 <2 0.00 No Limit ES2012239-002 TZUPS EP075(SIM): Pentol 108-95-2 0.5 mg/kg <0.5			EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES2012239-002 T2/JPS EP075(SIM): Phenol 108-95-2 0.5 mg/kg <0.5 <0.5 0.00 No Limit ES2012239-002 T2/JPS EP075(SIM): Phenol 95-57-8 0.5 mg/kg <0.5			EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.00	No Limit
EPO75(SIM): 2-Chlorophenol 95-57-8 0.5 mg/kg <0.5 <0.5 0.00 No Limit EPO75(SIM): 2-Methylphenol 95-57-8 0.5 mg/kg <0.5			EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.00	No Limit
EP075(SIM): 2-Methylphenol 95:48-7 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): 2-Methylphenol 88-75-5 0.5 mg/kg <0.5	ES2012239-002	T2/JPS	EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EPO75(SIM): 2-Nitrophenol 88-75-5 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): 2-Nitrophenol 105-67-9 0.5 mg/kg <0.5			EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): 2.4-Dimethylphenol 105-67-9 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): 2.4-Dichlorophenol 120-83-2 0.5 mg/kg <0.5			EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): 2.4-Dichlorophenol 120-83-2 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): 2.6-Dichlorophenol 87-65-0 0.5 mg/kg <0.5			EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): 2.6-Dichlorophenol 87-65-0 0.5 mg/kg <0.5 0.00 No Limit EP075(SIM): 2.6-Dichlorophenol 59-50-7 0.5 mg/kg <0.5			EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EPO75(SIM): 4-Chloro-3-methylphenol 59-50-7 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): 2.4.6-Trichlorophenol 88-06-2 0.5 mg/kg <0.5			EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): 2.4.6-Trichlorophenol 88-06-2 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): 2.4.5-Trichlorophenol 95-95-4 0.5 mg/kg <0.5			EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
Image: Construction of the intervention of the interventint of the intervention of the interventint of the interventint of			EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
Image: Constraint of the intervention of the intervent of the intervention of the intervention of the i			EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): Pentachlorophenol 87-86-5 2 mg/kg <2 <2 0.00 No Limit EP075(SIM): Potrachlorophenol 87-86-5 2 mg/kg <2			EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 2968513) ES2012401-001 Anonymous EP075(SIM): Naphthalene 91-20-3 0.5 mg/kg <0.5			EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	<1	0.00	No Limit
ES2012401-001 Anonymous EP075(SIM): Naphthalene 91-20-3 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): Acenaphthylene 208-96-8 0.5 mg/kg 0.5 0.5 0.00 No Limit EP075(SIM): Acenaphthylene 83-32-9 0.5 mg/kg <0.5			EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	<2	0.00	No Limit
ES2012401-001 Anonymous EP075(SIM): Naphthalene 91-20-3 0.5 mg/kg <0.5 <0.5 0.00 No Limit EP075(SIM): Acenaphthylene 208-96-8 0.5 mg/kg 0.5 0.5 0.00 No Limit EP075(SIM): Acenaphthylene 83-32-9 0.5 mg/kg <0.5	EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2968513)							
EP075(SIM): Acenaphthylene 208-96-8 0.5 mg/kg 0.5 0.00 No Limit EP075(SIM): Acenaphthene 83-32-9 0.5 mg/kg <0.5	ES2012401-001	-		91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP075(SIM): Acenaphthene 83-32-9 0.5 mg/kg <0.5 <0.5 0.00 No Limit				208-96-8	0.5	mg/kg	0.5	0.5	0.00	No Limit
				83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
				86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page : 6 of 12 Work Order : ES2012239 Client : DOUGLAS PARTNERS PTY LTD Project : 91601.03

ub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
P075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2968513) - continued							
ES2012401-001	Anonymous	EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	2.5	2.1	15.3	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	0.7	0.6	21.4	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	6.7	6.4	4.45	0% - 50%
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	6.7	6.4	4.61	0% - 50%
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	3.6	3.1	15.2	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	3.3	3.2	3.46	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	4.7	4.5	4.12	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	1.7	1.8	10.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	3.2	3.1	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	2.0	2.0	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	2.4	2.4	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	38.0	36.1	5.13	0% - 20%
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	4.4	4.3	3.68	No Limit
ES2012239-002 T2/JPS	T2/JPS	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
P080/071: Total Pe	troleum Hydrocarbons								
S2012239-001	T1/JPS	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
S2012401-008	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit

Page	: 7 of 12
Work Order	: ES2012239
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 91601.03

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080/071: Total Pe	troleum Hydrocarbons	Gige (QC Lot: 2968514) - continued							
ES2012401-001	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	180	170	7.26	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	160	190	13.8	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES2012239-002	T2/JPS	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 2968028)							
ES2012239-001	T1/JPS	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES2012401-008	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total Re	ecoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2968514)							
ES2012401-001	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	280	280	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES2012239-002	T2/JPS	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080: BTEXN (QC	Lot: 2968028)								
ES2012239-001	T1/JPS	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES2012401-008	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES(QCL	ot: 2968500)								
EG005T: Aluminium	7429-90-5	50	mg/kg	<50	6134 mg/kg	98.4	70.0	130	
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	97.9	86.0	126	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	93.5	83.0	113	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	84.9	76.0	128	
G005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	92.6	86.0	120	
EG005T: Iron	7439-89-6	50	mg/kg	<50	8400 mg/kg	75.0	70.0	130	
G005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	93.7	80.0	114	
G005T: Manganese	7439-96-5	5	mg/kg	<5	130 mg/kg	96.7	85.0	117	
G005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	94.9	87.0	123	
EG005T: Selenium	7782-49-2	5	mg/kg	<5	5.37 mg/kg	94.4	75.0	131	
G005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	101	80.0	122	
G035T: Total Recoverable Mercury by FIMS(QCLot: 2968501)								
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	79.6	70.0	105	
P066: Polychlorinated Biphenyls (PCB) (QCLo	t: 2968516)								
P066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	83.8	62.0	126	
EP068A: Organochlorine Pesticides (OC)(QCLc	of: 2968515)								
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	83.8	69.0	113	
P068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	83.5	65.0	117	
EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	88.1	67.0	119	
P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	78.8	68.0	116	
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.0	65.0	117	
P068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	79.7	67.0	115	
EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	87.9	69.0	115	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	80.6	62.0	118	
P068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	80.4	63.0	117	
P068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.2	66.0	116	
P068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	81.3	64.0	116	
P068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	80.7	66.0	116	
P068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	77.8	67.0	115	
:P068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	77.8	67.0	123	
P068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	81.4	69.0	115	
P068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.5	69.0	121	
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	96.0	56.0	120	

Page	: 9 of 12
Work Order	: ES2012239
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 91601.03

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)		Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl
EP068A: Organochlorine Pesticides (OC) (QCLot:	2968515) - continued							
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	80.7	66.0	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	79.1	64.0	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	78.2	54.0	130
EP068B: Organophosphorus Pesticides (OP) (QCL	_ot: 2968515)							
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	76.2	59.0	119
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	87.6	62.0	128
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	93.0	54.0	126
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	100	67.0	119
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	90.4	70.0	120
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	81.3	72.0	120
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	78.1	68.0	120
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	87.2	68.0	122
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	82.4	69.0	117
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	81.5	76.0	118
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	78.6	64.0	12
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	79.0	70.0	116
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	74.5	69.0	12
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	80.7	66.0	118
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	87.8	68.0	124
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	106	62.0	112
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	78.0	68.0	120
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	81.8	65.0	127
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	76.2	41.0	123
EP075(SIM)A: Phenolic Compounds (QCLot: 2968	513)							
EP075(SIM): Phenol	108-95-2	0.5	mg/kg	<0.5	6 mg/kg	89.5	71.0	125
EP075(SIM): 2-Chlorophenol	95-57-8	0.5	mg/kg	<0.5	6 mg/kg	88.7	72.0	124
EP075(SIM): 2-Methylphenol	95-48-7	0.5	mg/kg	<0.5	6 mg/kg	89.3	71.0	123
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	1	mg/kg	<1	12 mg/kg	93.1	67.0	127
EP075(SIM): 2-Nitrophenol	88-75-5	0.5	mg/kg	<0.5	6 mg/kg	77.2	54.0	114
EP075(SIM): 2.4-Dimethylphenol	105-67-9	0.5	mg/kg	<0.5	6 mg/kg	93.2	68.0	120
EP075(SIM): 2.4-Dichlorophenol	120-83-2	0.5	mg/kg	<0.5	6 mg/kg	90.9	66.0	120
EP075(SIM): 2.6-Dichlorophenol	87-65-0	0.5	mg/kg	<0.5	6 mg/kg	93.9	70.0	120
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	0.5	mg/kg	<0.5	6 mg/kg	91.7	70.0	116
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	0.5	mg/kg	<0.5	6 mg/kg	74.5	54.0	114
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	0.5	mg/kg	<0.5	6 mg/kg	79.5	60.0	114
EP075(SIM): Pentachlorophenol	87-86-5	2	mg/kg	<2	12 mg/kg	24.7	10.0	57.
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(OCI of: 2968513)							
EP075(SIM)B. Polynuclear Aromatic Hydrocarbons EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	92.9	77.0	125

Page	: 10 of 12
Work Order	: ES2012239
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 91601.03

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	oratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons(C	CLot: 2968513) - co	ntinued							
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	93.8	72.0	124	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	90.8	73.0	127	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	91.8	72.0	126	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	94.1	75.0	127	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	92.7	77.0	127	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	95.7	73.0	127	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	97.9	74.0	128	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	97.3	69.0	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	91.7	75.0	127	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	98.6	68.0	116	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	97.6	74.0	126	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	91.8	70.0	126	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	87.5	61.0	121	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	80.7	62.0	118	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	89.4	63.0	121	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2	968028)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	107	68.4	128	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 2	968514)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	103	75.0	129	
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	94.3	77.0	131	
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	101	71.0	129	
EP080/071: Total Recoverable Hydrocarbons - NEPM :	2013 Eractions (OCL	ot: 2968028)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	112	68.4	128	
EP080/071: Total Recoverable Hydrocarbons - NEPM :	1	-							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	96.6	77.0	125	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	90.4	74.0	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	88.0	63.0	131	
		100	iligitig	100	220 mg/kg	00.0	00.0	101	
EP080: BTEXN (QCLot: 2968028)	71-43-2	0.2	malka	<0.2	1 ma///a	106	62.0	116	
EP080: Benzene	108-88-3	0.2	mg/kg	<0.2	1 mg/kg	106	62.0 67.0	116	
EP080: Toluene			mg/kg		1 mg/kg	110	67.0	121	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg				
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	110	66.0	118	
	106-42-3 95-47-6	0.5	ma/ka	<0.5	1 ma/ka	109	68.0	120	
EP080: ortho-Xylene	90-47-0	0.0	mg/kg	~ 0.5	1 mg/kg	109	00.0	120	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Ib-Matrix: SOIL					Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery L	imits (%).	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
G005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2968500)							
ES2012239-002	T2/JPS	EG005T: Arsenic	7440-38-2	50 mg/kg	120	70.0	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	110	70.0	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	108	70.0	130	
		EG005T: Copper	7440-50-8	250 mg/kg	108	70.0	130	
		EG005T: Lead	7439-92-1	250 mg/kg	110	70.0	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	114	70.0	130	
		EG005T: Zinc	7440-66-6	250 mg/kg	95.6	70.0	130	
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 2968	501)						
S2012239-002	T2/JPS	EG035T: Mercury	7439-97-6	5 mg/kg	97.8	70.0	130	
P066: Polychlorii	nated Biphenyls (PCB) (QCLot: 2968516)							
ES2012239-002	T2/JPS	EP066: Total Polychlorinated biphenyls		1 mg/kg	102	70.0	130	
P068A: Organocl	nlorine Pesticides (OC) (QCLot: 2968515)							
ES2012239-002	T2/JPS	EP068: gamma-BHC	58-89-9	0.5 mg/kg	111	70.0	130	
		EP068: Heptachlor	76-44-8	0.5 mg/kg	80.8	70.0	130	
	EP068: Aldrin	309-00-2	0.5 mg/kg	81.6	70.0	130		
	EP068: Dieldrin	60-57-1	0.5 mg/kg	93.4	70.0	130		
		EP068: Endrin	72-20-8	2 mg/kg	107	70.0	130	
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	86.1	70.0	130	
P068B: Organop	nosphorus Pesticides (OP) (QCLot: 29685	(15)						
ES2012239-002	T2/JPS	EP068: Diazinon	333-41-5	0.5 mg/kg	85.1	70.0	130	
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	83.2	70.0	130	
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	95.0	70.0	130	
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	95.5	70.0	130	
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	98.1	70.0	130	
P075(SIM)A: Phe	nolic Compounds (QCLot: 2968513)							
ES2012239-002	T2/JPS	EP075(SIM): Phenol	108-95-2	10 mg/kg	90.0	70.0	130	
		EP075(SIM): 2-Chlorophenol	95-57-8	10 mg/kg	84.1	70.0	130	
		EP075(SIM): 2-Nitrophenol	88-75-5	10 mg/kg	78.0	60.0	130	
		EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	10 mg/kg	82.3	70.0	130	
	EP075(SIM): Pentachlorophenol	87-86-5	10 mg/kg	43.9	20.0	130		
	nuclear Aromatic Hydrocarbons (QCLot:							
ES2012239-002	T2/JPS	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	82.6	70.0	130	
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	90.9	70.0	130	

Page	: 12 of 12
Work Order	: ES2012239
Client	: DOUGLAS PARTNERS PTY LTD
Project	91601.03

ub-Matrix: SOIL				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2968028)						
ES2012239-001	T1/JPS	EP080: C6 - C9 Fraction		32.5 mg/kg	121	70.0	130
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 2968514)						
ES2012239-002	T2/JPS	EP071: C10 - C14 Fraction		523 mg/kg	79.8	73.0	137
		EP071: C15 - C28 Fraction		2319 mg/kg	110	53.0	131
		EP071: C29 - C36 Fraction		1714 mg/kg	107	52.0	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(Q	CLot: 2968028)					
ES2012239-001	T1/JPS	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	119	70.0	130
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions(Q	CLot: 2968514)					
ES2012239-002	T2/JPS	EP071: >C10 - C16 Fraction		860 mg/kg	104	73.0	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	119	53.0	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	108	52.0	132
P080: BTEXN (Q	CLot: 2968028)						
S2012239-001	T1/JPS	EP080: Benzene	71-43-2	2.5 mg/kg	106	70.0	130
		EP080: Toluene	108-88-3	2.5 mg/kg	105	70.0	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	103	70.0	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	101	70.0	130
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	100.0	70.0	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	78.6	70.0	130

QA/QC Compliance Assessment to assist with Quality Review										
/ork Order	: ES2012239	Page	: 1 of 5							
lient	DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney							
tact	: MR PAULO SEBASTIAN	Telephone	: +61-2-8784 8555							
t	: 91601.03	Date Samples Received	: 09-Apr-2020							
	: Muswellbrook	Issue Date	: 17-Apr-2020							
oler	:	No. of samples received	: 4							
der number	: 150084	No. of samples analysed	: 4							

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
T1/JPS,	T2/JPS,	07-Apr-2020				15-Apr-2020	21-Apr-2020	 ✓
T2/JRK,	T3/JRK							
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
T2/JPS,	T3/JRK	07-Apr-2020	15-Apr-2020	04-Oct-2020	-	15-Apr-2020	04-Oct-2020	✓
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)		07 4	45 4	05 May 2020		40.4	05 May 2020	
T2/JPS		07-Apr-2020	15-Apr-2020	05-May-2020	~	16-Apr-2020	05-May-2020	✓
EP066: Polychlorinated Biphenyls (PCB)								1
Soil Glass Jar - Unpreserved (EP066)		07 Apr 2020	4E Amr 2020	21-Apr-2020		16-Apr-2020	25-May-2020	,
T2/JPS		07-Apr-2020	15-Apr-2020	21-Api-2020	~	16-Apr-2020	20-1v1ay-2020	✓
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068)		07-Apr-2020	15-Apr-2020	21-Apr-2020	1	16-Apr-2020	25-May-2020	,
T2/JPS, T3/JRK	T2/JRK,	07-Api-2020	15-Apr-2020	21-Api-2020	~	16-Api-2020	23-111ay-2020	✓
EP068B: Organophosphorus Pesticides (OP)			1			1		
Soil Glass Jar - Unpreserved (EP068) T2/JPS.	T2/JRK,	07-Apr-2020	15-Apr-2020	21-Apr-2020	1	16-Apr-2020	25-May-2020	1
T3/JRK	12/3111,		10 / 01 2020	21700 2020	v	10 Apr 2020	20 May 2020	v
EP075(SIM)A: Phenolic Compounds Soil Glass Jar - Unpreserved (EP075(SIM))								
T1/JPS,	T2/JPS	07-Apr-2020	15-Apr-2020	21-Apr-2020	1	16-Apr-2020	25-May-2020	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbo					-		,	
Soil Glass Jar - Unpreserved (EP075(SIM))	0115							
T1/JPS,	T2/JPS	07-Apr-2020	15-Apr-2020	21-Apr-2020	1	16-Apr-2020	25-May-2020	1
EP080/071: Total Petroleum Hydrocarbons							1	
Soil Glass Jar - Unpreserved (EP071)								
T1/JPS,	T2/JPS	07-Apr-2020	15-Apr-2020	21-Apr-2020	1	15-Apr-2020	25-May-2020	✓
Soil Glass Jar - Unpreserved (EP080)								
T1/JPS,	T2/JPS	07-Apr-2020	15-Apr-2020	21-Apr-2020	1	16-Apr-2020	21-Apr-2020	✓

Page	: 3 of 5
Work Order	: ES2012239
Client	: DOUGLAS PARTNERS PTY LTD
Project	: 91601.03

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocart	bons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071)								
T1/JPS,	T2/JPS	07-Apr-2020	15-Apr-2020	21-Apr-2020	1	15-Apr-2020	25-May-2020	\checkmark
Soil Glass Jar - Unpreserved (EP080)								
T1/JPS,	T2/JPS	07-Apr-2020	15-Apr-2020	21-Apr-2020	1	16-Apr-2020	21-Apr-2020	✓
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)								
T1/JPS,	T2/JPS	07-Apr-2020	15-Apr-2020	21-Apr-2020	~	16-Apr-2020	21-Apr-2020	 ✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270E Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270E Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270E. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260D. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Table B1: Summary of Laboratory Results – Buildings B1 to B5 campared to Landuse Criteria

(1	1	1	1															
			Metals								0	СР							
			Lead	DDT+DDE+DDD c	DDD	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	alpha-chlordane	gamma- Chlordane	Total Endosulfan	Endosulfan I	Endosulfan II	Endosulfan Sulphate	Endrin	Heptachlor	Hexachlorobenze ne	Methoxvchlor
		PQL	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/
B1-1	0 - 0.05 m	07/04/2020	21 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B1-2	0 - 0.05 m	07/04/2020	57 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	0.2 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
D4/JRK	0 - 0.05 m	07/04/2020	61 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
T3/JRK	0 - 0.05 m	07/04/2020	72 300 1100	<0.05 240 180	<0.05 NC NC	<0.05 NC NC	<0.2 NC 180	<0.05 6 NC	<0.05 50 NC	NT NC NC	NT NC NC	<0.05 270 NC	<0.05 NC NC	<0.05 NC NC	<0.05 NC NC	<0.05 10 NC	<0.05 6 NC	<0.05 10 NC	<0. 300
B1-3	0 - 0.05 m	07/04/2020	24 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	2.4 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B1-4	0 - 0.05 m	07/04/2020	36 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	1.5 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B2-1	0 - 0.05 m	07/04/2020	63 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B2-2	0 - 0.05 m	07/04/2020	68 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B2-3	0 - 0.05 m	07/04/2020	24 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B2-4	0 - 0.05 m	07/04/2020	76 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B3-1	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B3-2	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B3-3	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B3-4	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B4-1	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
D1/JRK	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B4-2	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B4-3	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B4-4	0 - 0.05 m	07/04/2020	NT 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B5-1	0 - 0.05 m	07/04/2020	53 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
D2/JRK	0 - 0.05 m	07/04/2020	63 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B5-2	0 - 0.05 m	07/04/2020	10 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B5-3	0 - 0.05 m	07/04/2020	39 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300
B5-4	0 - 0.05 m	07/04/2020	2 300 1100	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0. 300

Lab result HIL/HSL value EIL/ESL value

🗕 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:

EIL/ESL

ML

b

HIL/HSL/DC

NEPC, Schedule B1 - HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)

NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)

NEPC, Schedule B1 - ML R/P/POS (undefined)

- QA/QC replicate of sample listed directly below the primary sample а
 - reported naphthalene laboratory result obtained from BTEXN suite
- criteria applies to DDT only С
- various PQLs for triplicate results d

		OPP					Complete	OCP suite						Complete	OPP suite	
Hexachlorobenze ne	Methoxychlor	Chlorpyriphos	alpha-BHC	peta-BHC pet		Chlorpyriphos- methyl	delta-BHC	Diazinon	Dimethoate	Endrin Aldehyde	Lindane	Heptachlor Epoxide	Azinphos methyl (Guthion)	Ethion	Fenitrothion	Ronnel (fenchlorphos)
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NT	<0.05	<0.05	<0.05	NT	NT
0 NC <0.1	300 NC <0.1	160 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC <0.1	160 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	<u>NC NC</u> <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1
<0.1 0 NC	<0.1 300 NC	<0.1 160 NC	NC NC	NC NC	×0.1	×0.1	NC NC	×0.1	NC NC	×0.1 NC NC	NC NC	<0.1 NC NC	×0.1	<0.1 NC NC	×0.1	NC NC
0 NC <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC
0 NC <0.1	300 NC <0.1	160 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	<u>NC NC</u> <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	<0.1
0 NC	300 NC	160 NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC

<0.1

60 NC NC NC NC NC

<0.1

<0.1

300 NC

<0.1

<0.1

<0.1

NC NC

<0.1

NC NC NC NC NC NC

<0.1

<0.1

NC NC

<0.1

NC NC

<0.1

NC NC

<0.1

NC NC

<0.1

IC NC

<0.1

NC NC

<0.1 <0.1 NC NC NC NC

Table B2: Summary of Laboratory Results – Buildings B6 to B10 campared to Landuse Criteria

		Metals	,															OPP					Complete	OCP suite						Complete OP	P suite		
		Lead	DDT+DDE+DDD c	DDD	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	alpha-chlordane	gamma- Chlordane	Total Endosulfan	Endosulfan I	Endosulfan II	Endosulfan Sulphate	Endrin	Heptachlor	Hexachlorobenze ne	Methoxychlor	Chlorpyriphos	alpha-BHC	beta-BHC	Bromophos-ethyl	Chlorpyriphos- methyl	delta-BHC	Diazinon	Dimethoate	Endrin Aldehyde	Lindane	Heptachlor Epoxide	Azinphos methyl (Guthion)	Ethion	Fenitrothion	Ronnel (fenchlorphos)
		PQL 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID	Depth	Sample Date mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r	mg/kg	mg/kg
B6-1	0 - 0.05 m	07/04/2020 25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC NC	<0.1	<0.1
B6-2	0 - 0.05 m	07/04/2020 13	<0.1 240 180 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC		<0.1 C NC N	<0.1
B6-3	0 - 0.05 m	07/04/2020 8 300 11	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC N0	<0.1	<0.1 IC NC
B6-4	0 - 0.05 m	07/04/2020 19 300 11	<0.1 00 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC NC	<0.1 C NC N	<0.1 IC NC
B7-1	0 - 0.05 m	07/04/2020 NT 300 11	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC NC	<0.1 C NC N	<0.1 IC NC
B7-2	0 - 0.05 m	07/04/2020 NT 300 11	<0.1 00 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC		<0.1 C NC N	<0.1 IC NC
B7-3	0 - 0.05 m	07/04/2020 NT 300 11	<0.1 00 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC		<0.1	<0.1 IC NC
B7-4	0 - 0.05 m	07/04/2020 NT 300 11	<0.1 00 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC		<0.1	<0.1
D3/JRK	0 - 0.05 m	07/04/2020 NT 300 11	<0.1 00 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1	<0.1
T2/JRK	0 - 0.05 m	07/04/2020 NT	<0.05 00 240 180	<0.05	<0.05	<0.2 NC 180	<0.05 6 NC	<0.05	NT NC NC	NT NC NC	<0.05 270 NC	<0.05	<0.05	<0.05	<0.05	<0.05 6 NC	<0.05	<0.2 300 NC	<0.05	<0.05 NC NC	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 NC NC	<0.05	NT	<0.05 NC NC	<0.05	<0.05 NC NC NC		
B8-1	0 - 0.05 m	07/04/2020 10	<0.1 00 240 180	<0.1	<0.1	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1	<0.1 270 NC	<0.1 NC NC	<0.1	<0.1	<0.1 10 NC	<0.1	<0.1 10 NC	<0.1 300 NC	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1
B8-2	0 - 0.05 m	07/04/2020 210	<0.1 00 240 180	<0.1	<0.1 NC NC	<0.1	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1	<0.1 270 NC	<0.1 NC NC	<0.1	<0.1	<0.1 10 NC	<0.1	<0.1 10 NC	<0.1 300 NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1		<0.1	<0.1
B8-3	0 - 0.05 m	07/04/2020 36	<0.1 240 180	<0.1	<0.1	<0.1 NC 180	<0.1	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 10 NC	<0.1 6 NC	<0.1	<0.1 300 NC	<0.1 160 NC	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1
B8-4	0 - 0.05 m	07/04/2020 19	<0.1	<0.1	<0.1	<0.1 NC 180	<0.1 6 NC	<0.1	<0.1	<0.1	<0.1 270 NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B9-1	0 - 0.05 m	07/04/2020 NT 300 11	<0.1 240 180	<0.1	<0.1	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC		<0.1	<0.1
B9-2	0 - 0.05 m	07/04/2020 NT	0.2	<0.1	0.2	<0.1	<0.1	<0.1 50 NC	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1
B9-3	0 - 0.05 m	07/04/2020 NT	<0.1 240 180	<0.1	<0.1	<0.1	<0.1	<0.1 50 NC	<0.1	<0.1	<0.1 270 NC	<0.1	<0.1	<0.1	<0.1	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1
B9-4	0 - 0.05 m	07/04/2020 NT	<0.1 240 180 240 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 270 NC	<0.1	<0.1	<0.1	<0.1	<0.1 6 NC	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1
B10-1	0 - 0.05 m	07/04/2020 NT	<pre></pre> 30 240 180 <0.1 <	<0.1	<0.1	<0.1	<0.1	<0.1 50 NC	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1
B10-2	0 - 0.05 m	07/04/2020 NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 50 NC	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1	<0.1	10 NC <0.1	6 NC <0.1	10 NC <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1
B10-3	0 - 0.05 m	07/04/2020 NT	240 180 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	270 NC <0.1 270 NC	NCNC<0.1	NC NC <0.1	<0.1	<0.1	6 NC <0.1 6 NC	10 NC <0.1	<0.1	<0.1 160 NC	NC NC <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NC NC <0.1 NC NC	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1
B10-4	0 - 0.05 m	07/04/2020 NT	<pre>>00 240 180 </pre> >00 240 180	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 270 NC 270 NC	<0.1	<0.1	<0.1	<0.1	<0.1	10 NC <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1
	1	300 11																															

Lab result
HIL/HSL value EIL/ESL value

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report **Blue** = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Ν	otes:	
	0.00.	

EIL/ESL

ML

b

c d

HIL/HSL/DC

- NEPC, Schedule B1 HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)
- NEPC, Schedule B1 EIL UR/POS (undefined), ESL UR/POS (undefined)
- NEPC, Schedule B1 ML R/P/POS (undefined)
- a QA/QC replicate of sample listed directly below the primary sample
 - reported naphthalene laboratory result obtained from BTEXN suite
 - criteria applies to DDT only
 - various PQLs for triplicate results

Table B3: Summary of Laboratory Results – Access Path and Stockpiles campared to Landuse Criteria

						1		Metals		1	1	1			Т	RH	1			BT	EX			P	AH		Coal Tar
				Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Manganese	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs	Coal Tar ID
			PQL	4	0.4	1	1	1	0.1	1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	0.1	0.05	0.5	0.05	-
Sample ID	Sampling area	Depth	Sample Date	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg <25	mg/kg 53	mg/kg <25	mg/kg NT	mg/kg 1500	mg/kg 1400	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg 0.2	mg/kg 7.6	mg/kg 12	mg/kg 69	-
401/0.05	Access track	0.05 m	07/04/2020	100 100	20 NC		6000 55	300 1100	40 NC	400 35	7400 150	3800 NC	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 33	3 NC	300 NC	Absent
401/0.15	Access track	0.15 m	07/04/2020	NT 100 100	NT 20 NC	NT 100 410	NT 6000 55	NT 300 1100	NT 40 NC	NT 400 35	NT 7400 150	NT 3800 NC	<25 NC NC	150 NC NC	<25 45 180	NT 110 120	620 NC 300	720 NC 2800	NT 0.5 50	NT 160 85	NT 55 70	NT 40 105	<0.1 3 170	0.2 NC 33	<0.5 3 NC	1.7 300 NC	NT
D1/JPS	Access track	-	07/04/2020	NT 100 100	NT 20 NC	NT 100 410	NT 6000 55	NT 300 1100	NT 40 NC	NT 400 35	NT 7400 150	NT 3800 NC	<25 NC NC	<50 NC NC	<25 45 180	NT 110 120	<100 NC 300	<100 NC 2800	NT 0.5 50	NT 160 85	NT 55 70	NT 40 105	<0.1 3 170	<0.05 NC 33	<0.5 3 NC	<0.05 300 NC	NT
402/0.4	Access track	0.4 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	<25	<50	<25	NT	<100	<100	NT	NT	NT	NT	<0.1	0.06	<0.5	0.51	NT
404/0.2	Access track	0.2 m	07/04/2020	100 100 NT	20 NC NT	100 410 NT	6000 55 NT	300 1100 NT	40 NC NT	400 35 NT	7400 150 NT	3800 NC NT	NC NC <25	NC NC <50	45 180 <25	110 120 NT	NC 300 140	NC 2800 150	0.5 50 NT	160 85 NT	55 70 NT	40 105 NT	3 170 <0.1	NC 33 0.56	3 NC 0.8	300 NC 9.3	NT
				100 100 NT	20 NC NT	100 410 NT	6000 55 NT	300 1100 NT	40 NC NT	400 35 NT	7400 150 NT	3800 NC NT	NC NC <25	NC NC <50	45 180 <25	110 120 NT	NC 300 <100	NC 2800 <100	0.5 50 NT	160 85 NT	55 70 NT	40 105 NT	3 170 <0.1	NC 33 <0.05	3 NC <0.5	300 NC <0.05	
406/0.35	Access track	0.35 m	07/04/2020	100 100				300 1100	40 NC	400 35	7400 150		NC NC	NC NC	45 180	110 120	NC 300		0.5 50	160 85	55 70	40 105	3 170	NC 33	3 NC	300 NC	NT
D3/JPS	Access track	-	07/04/2020	NT 100 100	NT 20 NC	NT 100 410	NT 6000 55	NT 300 1100	NT 40 NC	NT 400 35	NT 7400 150	NT 3800 NC	<25 NC NC	<50 NC NC	<25 45 180	NT 110 120	<100 NC 300	<100 NC 2800	NT 0.5 50	NT 160 85	NT 55 70	NT 40 105	<0.1 3 170	<0.05 NC 33	<0.5 <mark>3 NC</mark>	<0.05 300 NC	NT
T1/JPS	Access track	-	07/04/2020	NT 100 100	NT 20 NC	NT 100 410	NT 6000 55	NT 300 1100	NT 40 NC	NT 400 35	NT 7400 150	NT 3800 NC	<10 NC NC	<50 NC NC	<10 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<0.5 55 70	<0.5 40 105	<0.5 3 170	<0.5 NC 33	<0.5 3 NC	<0.5 300 NC	NT
106A/0.25	Access track	0.25 m	07/04/2020	NT	NT	NT	NT	NT	NT 40 NC	NT	NT	NT	<25	<50	<25	NT	240	460	NT	NT	NT	NT	<0.1	<0.05	<0.5	<0.05	Absent
106A/0.35	Access track	0.35 m	07/04/2020	100 100 NT	20 NC NT	100 410 NT	6000 55 NT	300 1100 NT	40 NC NT	400 35 NT	7400 150 NT	3800 NC NT	NC NC <25	<u>NC</u> NC <50	45 180 <25	110 120 NT	NC 300 <100	NC 2800 <100	0.5 50 NT	160 85 NT	55 70 NT	40 105 NT	3 170 <0.1	NC 33 <0.05	3 NC <0.5	300 NC <0.05	NT
106A/0.5			07/04/2020	100 100 NT	20 NC NT	100 410 NT	6000 55 NT	300 1100 NT	40 NC NT	400 35 NT	7400 150 NT	3800 NC NT	NC NC <25	NC NC <50	45 180 <25	110 120 NT	NC 300 <100	NC 2800 <100	0.5 50 NT	160 85 NT	55 70 NT	40 105 NT	3 170 <0.1	NC 33 <0.05	3 NC <0.5	300 NC <0.05	NT
	Access track	0.5 m		100 100 NT	20 NC NT	100 410 NT	6000 55 NT	300 1100 NT	40 NC NT	400 35 NT	7400 150 NT	3800 NC	NC NC <25	NC NC 180	45 180 <25	110 120 NT	NC 300	NC 2800 1200	0.5 50 NT	160 85 NT	55 70 NT	40 105 NT	3 170 1.4	NC 33 90	3 NC	300 NC 710	
407/0.28	Access track	0.28 m	07/04/2020	100 100	20 NC	100 410	6000 55	300 1100	40 NC	400 35	7400 150	3800 NC	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	55 70	40 105	3 170	NC 33	3 NC	300 NC	Absent
411/0.01	Access track	0.01 m	07/04/2020	NT 100 100	NT 20 NC	NT 100 410	NT 6000 55	NT 300 1100	NT 40 NC	NT 400 35	NT 7400 150	NT 3800 NC	<25 NC NC	95 NC NC	<25 45 180	NT 110 120	2100 NC 300	2300 NC 2800	NT 0.5 50	NT 160 85	NT 55 70	NT 40 105	0.2 3 170	8.5 NC 33	14 3 NC	160 300 NC	Absent
412/0.15	Access track	0.15 m	07/04/2020	NT 100 100	NT 20 NC	NT 100 410	NT 6000 55	NT 300 1100	NT 40 NC	NT 400 35	NT 7400 150	NT 3800 NC	<25 NC NC	<50 NC NC	<25 45 180	NT 110 120	<100 NC 300	100 NC 2800	NT 0.5 50	NT 160 85	NT 55 70	NT 40 105	<0.1 3 170	0.2 NC 33	<0.5 3 NC	1.4 300 NC	NT
413/0.15	Access track	0.15 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	<25	<50	<25	NT	210	130	NT	NT	NT	NT	<0.1	2.2	3.9	16	NT
301/1	Stockpile	_	07/04/2020	100 100 8	<0.4	100 410 10	6000 55 57	300 1100 12	<0.1	400 35 20	7400 150 290	3800 NC 340	<25	<50	<25	<50	140	NC 2800 110	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 33 0.3	3 NC <0.5	300 NC 2.6	NT
				100 100 9	20 NC <0.4	100 410 8	6000 55 44	300 1100 10	40 NC <0.1	400 35 13	7400 150 250	3800 NC 260	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 33 0.3	3 NC <0.5	300 NC 2.3	
301/2	Stockpile	-	07/04/2020	100 100	20 NC <0.4	100 410 12	6000 55 39	300 1100 12	40 NC <0.1	400 35	7400 150				45 180 <25	110 120 <50			0.5 50	160 85 <0.5	55 70	40 105 <1	3 170 <1	NC 33 <0.05	3 NC	300 NC	NT
301A/2	Stockpile	-	07/04/2020	5 100 100				300 1100		11 400 35	120 7400 150	270 3800 NC	<25 NC NC	<50 NC NC			180 NC 300	140 NC 2800	<0.2 0.5 50	160 85	<1 55 70	40 105		×0.05 NC 33	<0.5 3 NC	<0.05 300 NC	NT
303/1	Stockpile	-	07/04/2020	6 100 100	<0.4 20 NC	3 100 410	8 6000 55	2 300 1100	<0.1 40 NC	3 400 35	42 7400 150	67 3800 NC	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	0.2 NC 33	<0.5 3 NC	1.3 300 NC	NT
303/2	Stockpile	-	07/04/2020	6	<0.4 20 NC	6	23 6000 55	4 300 1100	<0.1 40 NC	7 400 35	120 7400 150	110 3800 NC	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	<100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	0.05 NC 33	<0.5 3 NC	0.05 300 NC	NT
D7/JPS	Stockpile	-	07/04/2020	11	<0.4	11	52	8	<0.1	15	210	220	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2	<0.5	0.79	NT
T2/JPS	Stockpile	-	07/04/2020	100 100 22	20 NC <1	100 410 13	6000 55 50	300 1100 11	40 NC <0.1	400 35 14	7400 150 246	3800 NC 245	NC NC <10	NC NC <50	45 180 <10	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <0.5	40 105 <0.5	3 170 <0.5	NC 33 <0.5	3 NC <0.5	300 NC <0.5	NT
				100 100 <4	20 NC <0.4	100 410 5	6000 55 19	300 1100 6	40 NC <0.1	400 35 5	7400 150 120	3800 NC 91	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800 <100	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 33 <0.05	3 NC <0.5	300 NC <0.05	NT
304/1	Stockpile	-	07/04/2020	100 100 6	20 NC <0.4	100 410 21	6000 55 28	300 1100 15	40 NC <0.1	400 35 18	7400 150 73	3800 NC 460	NC NC <25	NC NC <50	45 180 <25	110 120 <50	NC 300 <100	NC 2800	0.5 50 <0.2	160 85 <0.5	55 70 <1	40 105 <1	3 170 <1	NC 33 <0.05	3 NC <0.5	300 NC <0.05	
306/1	Stockpile	-	07/04/2020	100 100	20 NC	100 410	6000 55	300 1100	40 NC	400 35	7400 150	3800 NC	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	<u>55</u> 70	40 105	3 170	NC 33	3 NC	300 NC	NT
306/2	Stockpile	-	07/04/2020	6 100 100	<0.4 20 NC	15 100 410	50 6000 55	16 300 1100	<0.1 40 NC	14 400 35	150 7400 150	320 3800 NC	<25 NC NC	69 NC NC	<25 45 180	69 110 120	260 NC 300	150 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	0.62 NC 33	0.9 3 NC	4.1 300 NC	NT
307/1	Stockpile	-	07/04/2020	<4 100 100	<0.4 20 NC	38 100 410	16 6000 55	7 300 1100	<0.1 40 NC	40 400 35	25 7400 150	240 3800 NC	<25 NC NC	<50 NC NC	<25 45 180	<50 110 120	100 NC 300	<100 NC 2800	<0.2 0.5 50	<0.5 160 85	<1 55 70	<1 40 105	<1 3 170	<0.05 NC 33	<0.5 3 NC	<0.05 300 NC	NT
307/2	Stockpile	-	07/04/2020	<4	<0.4	33	14	10	<0.1	32	30	270	<25	<50	<25	<50	200	230	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05	NT
				100 100	20 NC	100 410	6000 55	300 1100	40 NC	400 35	7400 150	3800 NC	NC NC	NC NC	45 180	110 120	NC 300	NC 2800	0.5 50	160 85	<u>55</u> 70	40 105	<u>3</u> 170	NC 33	3 NC	300 NC	

Lab result HIL/HSL value

EIL/ESL

value

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:
HIL/HSL/DC
EIL/ESL
ML
а
b
с
d

NEPC, Schedule B1 - HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)

NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)

NEPC, Schedule B1 - ML R/P/POS (undefined)

QA/QC replicate of sample listed directly below the primary sample

reported naphthalene laboratory result obtained from BTEXN suite

criteria applies to DDT only

various PQLs for triplicate results

Project 91601.03

Table B3: Summary of Laboratory Results – Access Path and Stockpiles campared to Landuse Criteria (continued)

				Phenol								0	СР								OPP				PC	ЭВ			
				Phenol	DDT+DDE+DDD c	DDD	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	alpha-chlordane	gamma- Chlordane	Total Endosulfan	Endosulfan I	Endosulfan II	Endosulfan Sulphate	Endrin	Heptachlor	Hexachlorobenze ne	Methoxychlor	Chlorpyriphos	Arochlor 1016	Total PCB	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Aroclor 1260
Sample ID	Sampling area	Dooth	PQL Sampla Data	5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID 401/0.05	Sampling area	Depth 0.05 m	Sample Date 07/04/2020	mg/kg <5	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT
				100 NC <5	240 180 NT	NC NC	NC NC	NC 180	6 NC NT	50 NC NT	NC NC	NC NC	270 NC NT	NC NC	NC NC	NC NC	10 NC NT	6 NC NT	10 NC NT	300 NC NT	160 NC NT	NC NC	1 NC NT	NC NC	NC NC NT	NC NC	NC NC I	NC NC	NC NC NT
401/0.15	Access track	0.15 m	07/04/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	NC NC	NC NC	270 NC	NC NC	NC NC	NC NC	10 NC	6 NC	10 NC	300 NC	160 NC	NC NC	1 NC	NC NC	NC NC	NC NC	NC NC I	NC NC	NC NC
D1/JPS	Access track	-	07/04/2020	<5 100 NC	NT 240 180	NT NC NC	NT NC NC	NT NC 180	NT 6 NC	NT 50 NC	NT NC NC	NT NC NC	NT 270 NC	NT NC NC	NT NC NC	NT NC NC	NT 10 NC	NT 6 NC	NT 10 NC	NT 300 NC	NT 160 NC	NT NC NC	NT 1 NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC	NT NC NC
402/0.4	Access track	0.4 m	07/04/2020	<5 100 NC	NT 240 180	NT NC NC	NT NC NC	NT NC 180	NT 6 NC	NT 50 NC	NT NC NC	NT NC NC	NT 270 NC	NT NC NC	NT NC NC	NT NC NC	NT 10 NC	NT 6 NC	NT 10 NC	NT 300 NC	NT 160 NC	NT NC NC	NT 1 NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC	NT NC NC
404/0.2	Access track	0.2 m	07/04/2020	<5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
406/0.35	Access track	0.35 m	07/04/2020	100 NC <5	240 180 NT	NC NC	NC NC NT	NC 180 NT	6 NC NT	50 NC NT	NC NC NT	NC NC NT	270 NC NT	NC NC NT	NC NC NT	NC NC NT	10 NC NT	6 NC NT	10 NC NT	300 NC NT	160 NC NT	NC NC NT	1 NC NT	NC NC NT	NC NC NT	NC NC NT	NC NC I	NC NC NT	NC NC NT
		0.00 11		100 NC <5	240 180 NT	NC NC	NC NC	NC 180	6 NC	50 NC	NC NC	NC NC	270 NC NT	NC NC	NC NC	NC NC	10 NC NT	6 NC NT	10 NC NT	300 NC NT	160 NC NT	NC NC	1 NC NT	NC NC	NC NC	NC NC	NC NC I	NC NC	NC NC
D3/JPS	Access track	-	07/04/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	NC NC	NC NC	270 NC	NC NC	NC NC	NC NC	10 NC	6 NC	10 NC	300 NC	160 NC	NC NC	1 NC	NC NC	NC NC	NC NC	NC NC I	NC NC	NC NC
T1/JPS	Access track	-	07/04/2020	<0.5 100 NC	NT 240 180	NT NC NC	NT NC NC	NT NC 180	NT 6 NC	NT 50 NC	NT NC NC	NT NC NC	NT 270 NC	NT NC NC	NT NC NC	NT NC NC	NT 10 NC	NT 6 NC	NT 10 NC	NT 300 NC	NT 160 NC	NT NC NC	NT 1 NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC	NT NC NC
106A/0.25	Access track	0.25 m	07/04/2020	<5 100 NC	NT 240 180	NT NC NC	NT NC NC	NT NC 180	NT 6 NC	NT 50 NC	NT NC NC	NT NC NC	NT 270 NC	NT NC NC	NT NC NC	NT NC NC	NT 10 NC	NT 6 NC	NT 10 NC	NT 300 NC	NT 160 NC	NT NC NC	NT 1 NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC	NT NC NC
106A/0.35	Access track	0.35 m	07/04/2020	<5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
106A/0.5	Access track	0.5 m	07/04/2020	100 NC <5	240 180 NT	NC NC	NC NC NT	NC 180 NT	6 NC NT	50 NC NT	NC NC NT	NC NC NT	270 NC NT	NC NC NT	NC NC NT	NC NC NT	10 NC NT	6 NC NT	10 NC NT	300 NC NT	160 NC NT	NC NC NT	1 NC NT	NC NC NT	NC NC NT	NC NC NT	NC NC I	NC NC NT	NC NC NT
	Access track			100 NC <5	240 180 NT	NC NC	NC NC	NC 180	6 NC	50 NC	NC NC	NC NC	270 NC	NC NC	NC NC	NC NC	10 NC NT	6 NC NT	10 NC NT	300 NC NT	160 NC NT	NC NC	1 NC NT	NC NC	NC NC	NC NC	NC NC I	NC NC	NC NC NT
407/0.28	Access track	0.28 m	07/04/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	NC NC	NC NC	270 NC	NC NC	NC NC	NC NC	10 NC	6 NC	10 NC	300 NC	160 NC	NC NC	1 NC	NC NC	NC NC	NC NC	NC NC I	NC NC	NC NC
411/0.01	Access track	0.01 m	07/04/2020	<5 100 NC	NT 240 180	NT NC NC	NT NC NC	NT NC 180	NT 6 NC	NT 50 NC	NT NC NC	NT NC NC	NT 270 NC	NT NC NC	NT NC NC	NT NC NC	NT 10 NC	NT 6 NC	NT 10 NC	NT 300 NC	NT 160 NC	NT NC NC	NT 1 NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC	NT NC NC
412/0.15	Access track	0.15 m	07/04/2020	<5 100 NC	NT 240 180	NT NC NC	NT NC NC	NT NC 180	NT 6 NC	NT 50 NC	NT NC NC	NT NC NC	NT 270 NC	NT NC NC	NT NC NC	NT NC NC	NT 10 NC	NT 6 NC	NT 10 NC	NT 300 NC	NT 160 NC	NT NC NC	NT 1 NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC	NT NC NC
413/0.15	Access track	0.15 m	07/04/2020	<5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
301/1	Stockpile		07/04/2020	100 NC <5	240 180 <0.1	NC NC <0.1	NC NC <0.1	NC 180 <0.1	6 NC <0.1	50 NC <0.1	NC NC <0.1	NC NC <0.1	270 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	10 NC <0.1	6 NC <0.1	10 NC <0.1	300 NC <0.1	160 NC <0.1	NC NC <0.1	1 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC I <0.1	NC NC <0.1	NC NC <0.1
				100 NC <5	240 180 <0.1	NC NC <0.1	NC NC <0.1	NC 180 <0.1	6 NC <0.1	50 NC <0.1	NC NC <0.1	NC NC <0.1	270 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	10 NC <0.1	6 NC <0.1	10 NC <0.1	300 NC <0.1	160 NC <0.1	NC NC <0.1	1 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1
301/2	Stockpile	-	07/04/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	NC NC	NC NC	270 NC	NC NC	NC NC	NC NC	10 NC	6 NC	10 NC	300 NC	160 NC	NC NC	1 NC	NC NC	NC NC	NC NC	NC NC I	NC NC	NC NC
301A/2	Stockpile	-	07/04/2020	<5 100 NC	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 1 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC I	<0.1 NC NC	<0.1 NC NC
303/1	Stockpile	-	07/04/2020	<5 100 NC	<0.1 240 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 1 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC I	<0.1	<0.1 NC NC
303/2	Stockpile	-	07/04/2020	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
D7/JPS	Stockpile		07/04/2020	100 NC <5	240 180 <0.1	NC NC <0.1	NC NC <0.1	NC 180 <0.1	6 NC <0.1	50 NC <0.1	NC NC <0.1	NC NC <0.1	270 NC <0.1	<0.1	NC NC <0.1	NC NC <0.1	10 NC <0.1	6 NC <0.1	10 NC <0.1	300 NC <0.1	160 NC <0.1	NC NC <0.1	1 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC I <0.1	<0.1	NC NC <0.1
	-			100 NC <0.5	240 180 <0.05	NC NC <0.05	NC NC <0.05	NC 180 <0.2	6 NC <0.05	50 NC <0.05	NC NC	NC NC	270 NC <0.05	NC NC <0.05	NC NC <0.05	NC NC <0.05	10 NC <0.05	6 NC <0.05	10 NC <0.05	300 NC <0.2	160 NC <0.05	NC NC	1 NC <0.1	NC NC	NC NC NT	NC NC	NC NC I	NC NC	NC NC NT
T2/JPS	Stockpile	-	07/04/2020	100 NC	240 180	NC NC	NC NC	NC 180	6 NC	50 NC	NC NC	NC NC	270 NC	NC NC	NC NC	NC NC	10 NC	6 NC	10 NC	300 NC	160 NC	NC NC	1 NC	NC NC	NC NC	NC NC	NC NC I	NC NC	NC NC
304/1	Stockpile	-	07/04/2020	<5 100 NC	<0.1 240 180	<0.1 NC NC	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1 NC NC	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 6 NC	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 1 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC I	<0.1 NC NC	<0.1 NC NC
306/1	Stockpile	-	07/04/2020	<5 100 NC	<0.1 240 180	<0.1	<0.1 NC NC	<0.1 NC 180	<0.1 6 NC	<0.1 50 NC	<0.1	<0.1 NC NC	<0.1 270 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 10 NC	<0.1 <mark>6 NC</mark>	<0.1 10 NC	<0.1 300 NC	<0.1 160 NC	<0.1 NC NC	<0.1 1 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC I	<0.1	<0.1 NC NC
306/2	Stockpile	-	07/04/2020	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
307/1	Stockpile		07/04/2020	100 NC <5	240 180 <0.1	NC NC <0.1	NC NC <0.1	NC 180 <0.1	6 NC <0.1	50 NC <0.1	NC NC <0.1	NC NC <0.1	270 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	10 NC <0.1	6 NC <0.1	10 NC <0.1	300 NC <0.1	160 NC <0.1	NC NC <0.1	1 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	VC NC <0.1	<0.1
	•			100 NC <5	240 180 <0.1	NC NC <0.1	NC NC <0.1	NC 180 <0.1	6 NC <0.1	50 NC <0.1	NC NC <0.1	NC NC <0.1	270 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	10 NC <0.1	6 NC <0.1	10 NC <0.1	300 NC <0.1	160 NC <0.1	NC NC <0.1	1 NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	<pre>NC NC <0.1</pre>	NC NC <0.1
307/2	Stockpile	-	07/04/2020		240 180											NC NC				300 NC						NC NC			NC NC

Lab result

value

EIL/ESL value HIL/HSL exceedance EIL/ESL exceedance HIL/HSL and EIL/ESL exceedance ML exceedance ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:	
HIL/HSL/DC	NEPC, Schedule B1 - HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)
EIL/ESL	NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)
ML	NEPC, Schedule B1 - ML R/P/POS (undefined)
а	QA/QC replicate of sample listed directly below the primary sample
b	reported naphthalene laboratory result obtained from BTEXN suite
С	criteria applies to DDT only
d	various PQLs for triplicate results

Project 91601.03

Table B3: Summary of Laboratory Results – Access Path and Stockpiles campared to Landuse Criteria (continued)

				Additio	nal metals							Complete	e PAH suite								TRH						Cor	nplete OC	CP suite						Complete O	PP suite	
				Aluminium	Iron	Selenium (Total)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthrace ne	Benzo(g,h,i)peryl ene	Chrysene	Dibenzo(a,h)anthr acene	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Phenanthrene	Pyrene	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons	alpha-BHC	beta-BHC	Bromophos-ethyl	Chlorpyriphos- methyl	delta-BHC	Diazinon	Dimethoate	Endrin Aldehyde	Lindane	Heptachlor Epoxide	Azinphos methyl (Guthion)	Ethion	Fenitrothion	Ronnel (fenchlorphos)
			PQL		10	2	0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.1	0.1	0.1).1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID	Sampling area	Depth	Sample Date			mg/kg NT	mg/kg <0.1	mg/kg 1.2	mg/kg	g mg/kg 3.7	mg/kg 10	mg/kg 4.6	mg/kg 2.2	mg/kg 8.2	mg/kg <0.1	mg/kg 8.1	mg/kg 0.6	mg/kg	mg/kg <25	mg/kg <50	mg/kg 670	mg/kg 1300	mg/kg 1970	mg/kg NT	mg/kg NT	mg/kg NT		g/kg NT		ng/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT	mg/kg NT
401/0.05	Access track	0.05 m	07/04/2020	NC NC NC	NC 200	0 NC	NC NC					NC NC	NC NC	NC NC		NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC		NC N		NC	NC NC	NC NC	NC NC	NC NC	NC NC I	NC NC I	NC NC
401/0.15	Access track	0.15 m	07/04/2020	NC NC NC	NC 200	NT 0 NC	<0.1 NC NC	<0.1 NC NC	<0.1			0.1 NC NC	<0.1 NC NC	0.2 NC NC		0.2 NC NC	<0.1 NC NC	0.2 NC NC	<25 NC NC	160 NC NC	290 NC NC	630 NC NC	1080 NC NC	NT NC NC	NT NC NC	NT NC NC	NC NC NC	NT NC N		NT NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC I	NT NC NC
D1/JPS	Access track	-	07/04/2020	NT NC NC NC	NT NC 200	NT 0 NC	<0.1 NC NC	<0.1 NC NC	<0.1	_	<0.1 C NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1	<25 NC NC	<50 NC NC	<100 NC NC	<100 NC NC	<50 NC NC	NT NC NC	NT NC NC	NT NC NC				NT NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC I	NT NC NC
402/0.4	Access track	0.4 m	07/04/2020		NT NC 200	NT 00 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC N	_	<0.1	<0.1 NC NC	<0.1 NC NC	0.2 NC NC	<0.1	<0.1 NC NC	0.1 NC NC	0.1 NC NC	<25 NC NC	<50 NC NC	<100 NC NC	<100 NC NC	<50 NC NC	NT NC NC	NT NC NC	NT NC NC	NT	NT NC N		NT NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC I	NT NC NC
404/0.2	Access track	0.2 m	07/04/2020		NT	NT	<0.1	0.1	0.4	0.6	0.6	0.5	<0.1	2.1	0.1	0.4	1.3	1.6	<25	<50	<100 NC NC	110 NC NC	110	NT	NT	NT NC NC		NT NC		NT	NT	NT	NT	NT NC NC	NT NC NC I	NT NC NC I	NT
406/0.35	Access track	0.35 m	07/04/2020	NC NC NC NT	NC 200	NT	<0.1	<0.1	<0.1		C NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	NT	NC NC	NT		NC N NT	NT NC NC	NC NT	NT	NT	NT	NT	NT NT	NT NT	NT
400/0.35		0.55 11	01/04/2020	NC NC NC	NC 200	0 NC NT	NC NC <0.1	NC NC <0.1	NC N <0.1		C NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <25	NC NC <50	NC NC <100	NC NC <100	NC NC <50	NC NC	NC NC	NC NC	NC NC NC	NC N	NT NC NC	NC NT	NC NC	NC NC	NC NC	NC NC	NC NC I	NC NC I	NC NC
D3/JPS	Access track	-	07/04/2020		NC 200	0 NC	NC NC			_		NC NC		NC NC	_	-	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC			NC NC	NC NC				NC NC		NC NC	NC NC	NC NC	NC NC I	NC NC I	NC NC
T1/JPS	Access track	-	07/04/2020	NT NC NC NC	NT 200	NT	<0.5	<0.5	<0.5		<0.5 NC NC	<0.5 NC NC	<0.5	<0.5 NC NC	<0.5	<0.5	<0.5	<0.5 NC NC	<10	<50 NC NC	<100 NC NC	<100	<50	NT	NT	NT NC NC	NT NC NC NC		NT	NT	NT		NT	NT NC NC	NT NC NC I	NT NC NC I	
106A/0.25	Access track	0.25 m	07/04/2020	NT	NT NC 200	NT 00 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC N	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1 NC NC	NC NC <25 NC NC	<50 NC NC	130 NC NC	200 NC NC	330 NC NC	NC NC	NC NC NC	NC NC	NT	NC N NT NC N	NT NC NC NC	NT NT NC	NC NC NC	NC NC NC	NC NC NC NC	NT NC NC	NT NC NC I	NT NC NC I	NT NC NC
106A/0.35	Access track	0.35 m	07/04/2020		NT 200	NT	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1	<0.1	<0.1	<25	<50	<100 NC NC	<100	<50		NT NC			NT NC N		NT NC				NT NC NC			NT NC NC
106A/0.5	Access track	0.5 m	07/04/2020	NC NC NC	NT NC 200	NT NC	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1	<0.1	<25 NC NC	<50 NC NC	<100 NC NC	<100 NC NC	<50 NC NC	NC NC	NC NC					NT NC	NC NC	NT NC NC		NT NC NC	NT NC NC I	NT NC NC I	NT NC NC
407/0.28	Access track	0.28 m	07/04/2020		NT 200		<0.1	8.6	9.8		35 NC NC	80 NC NC	3.9 NC NC	110 NC NC	0.8	40 NC NC	17 NC NC	110 NC NC	<25	83 NC NC	3300 NC NC	2600	5983		NT NC NC					NT				NT NC NC			
411/0.01	Access track	0.01 m	07/04/2020	NT NC NC NC	NT NC 200	NT 00 NC	0.1 NC NC	2 NC NC	2.2 NC N	9	7.4	9.7 NC NC	2.3 NC NC	50 NC NC	0.3	8.4 NC NC	9.2 NC NC	40 NC NC	<25 NC NC	57 NC NC	1000 NC NC	1800 NC NC	2857 NC NC	NT NC NC	NT NC NC	NT NC NC		NT NC N		NT NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC	NT NC NC I	NT NC NC I	NT NC NC
412/0.15	Access track	0.15 m	07/04/2020			NT 00 NC	<0.1	<0.1	<0.1		0.3 0.3	0.1	<0.1	0.1	<0.1	0.3	<0.1	0.1	<25	<50	<100	<100	<50	NT	NT NC NC				NT	NT NC	NT NC NC	NT NC NC	NT	NT NC NC		NT	NT
413/0.15	Access track	0.15 m	07/04/2020		NT	NT NC	<0.1 NC NC	0.6	0.3	0.6	3.9	0.5 NC NC	0.9	NC NC 0.2 NC NC	<0.1	3.2	<0.1 NC NC	0.2 NC NC	<25 NC NC	<50 NC NC	100 NC NC	170 NC NC	270 NC NC	NC NC	NC NC NC	NC NC NC	NT	NC N NT NC N		NT NC	NC NC NT NC NC	NC NC	NC NC NT NC NC	NC NC NC NC	NC NC I	NT NC NC I	NC NC NC
301/1	Stockpile	-	07/04/2020		0000	<2	<0.1	<0.1	<0.1		0.3	0.2	<0.1	0.3	<0.1	0.3	<0.1	0.3	<25	<50	<100	110	110	<0.1	<0.1	<0.1	<0.1 <	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
				NC NC 6700 1		0 NC <2	NC NC <0.1	NC NC <0.1	NC N <0.1		0.3	NC NC 0.2	0.1	NC NC 0.2	<u>NC NC</u> <0.1	0.3	NC NC <0.1	0.2	NC NC <25	NC NC <50	NC NC <100	NC NC <100	<u>NC NC</u> <50	NC NC <0.1	NC NC <0.1	NC NC <0.1		NC N 0.1		> NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1
301/2	Stockpile	-	07/04/2020	NC NC NC	NC 200	0 NC	NC NC		-		NC NC	NC NC		NC NC		NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC	NC NC NC			NC	NC NC	NC NC	NC NC	NC NC	NC NC I	NC NC I	NC NC
301A/2	Stockpile	-	07/04/2020			<2 00 NC	<0.1 NC NC	<0.1 NC NC	<0.1		<0.1 C NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<25 NC NC	<50 NC NC	<100 NC NC	270 NC NC	270 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC		0.1 NC N		<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC I	<0.1 NC NC I	<0.1 NC NC
303/1	Stockpile	-	07/04/2020		600	<2 00 NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC N		0.1	0.1 NC NC	<0.1	0.2 NC NC	<0.1	0.1	<0.1	0.2 NC NC	<25 NC NC	<50 NC NC	<100 NC NC	<100 NC NC	<50	<0.1	<0.1 NC NC	<0.1	<0.1 <	0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC 1	<0.1 NC NC I	<0.1 NC NC
303/2	Stockpile	-	07/04/2020			<2 0 NC	<0.1 NC NC	<0.1	<0.1	-	<0.1 C NC NC	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<25 NC NC	<50 NC NC	<100 NC NC	<100 NC NC	<50	<0.1 NC NC	<0.1	<0.1 NC NC		0.1 NC N		<0.1	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1	<0.1 NC NC I	<0.1	<0.1 NC NC
D7/JPS	Stockpile	-	07/04/2020	7000 20	0000	<2 00 NC	<0.1 NC NC	<0.1	<0.1	<0.1	0.1	<0.1 NC NC	<0.1	<0.1 NC NC	<0.1	0.1	<0.1 NC NC	0.1 NC NC	<25	<50 NC NC	<100 NC NC	<100 NC NC	<50	<0.1	<0.1 NC NC	<0.1	<0.1 <	0.1	<0.1	<0.1	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC	<0.1 NC NC 1	<0.1 NC NC I	<0.1 NC NC
T2/JPS	Stockpile	-	07/04/2020	6370 20	0100	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100	<50	<0.05	<0.05	<0.05	<0.05 <	0.05	<0.05 <	<0.05	<0.05	NT	<0.05	<0.05	<0.05	NT	NT
304/1	Stockpile	-	07/04/2020	3000 6	600	00 NC <2 00 NC	NC NC <0.1 NC NC	<0.1	<0.1	<0.1	<0.1	NC NC <0.1 NC NC	<0.1	NC NC <0.1	<0.1	NC NC <0.1 NC NC	<0.1	NC NC <0.1 NC NC	<25	NC NC <50	NC NC <100	NC NC <100 NC	<50	NC NC <0.1 NC	<0.1	<0.1	<0.1 <	0.1	<0.1	<0.1	NC NC <0.1	<0.1	<0.1	NC NC <0.1 NC NC	NC NC I <0.1 I NC NC I	NC NC I <0.1 NC NC I	NC NC <0.1 NC NC
306/1	Stockpile	-	07/04/2020			<2	<0.1	NC NC <0.1	NC N <0.1		C NC NC <0.1	<0.1	<0.1	NC NC <0.1	NC NC <0.1	<0.1	NC NC <0.1	<0.1	<25	NC NC <50	NC NC <100	<100	<50	NC NC <0.1	NC NC <0.1	<0.1		0.1	<0.1	> NC <0.1	NC NC <0.1	<u>NC NC</u> <0.1	NC NC <0.1	<0.1	<0.1	<0.1	<0.1
306/2	Stockpile	-	07/04/2020			00 NC <2	NC NC <0.1	NC NC 0.1	NC N <0.1		0.6	NC NC 0.2	0.1	NC NC 0.3	NC NC <0.1	NC NC 0.5	<0.1	0.3	<25	NC NC <50	NC NC 160	NC NC 200	NC NC 360	NC NC <0.1	NC NC <0.1	<0.1	<0.1 <	NC N 0.1		NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC I <0.1 I	NC NC <0.1	NC NC <0.1
						0 NC <2	NC NC <0.1	NC NC <0.1	NC N <0.1		C NC NC <<0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <25	NC NC <50	NC NC <100	NC NC <100	NC NC <50	NC NC <0.1	NC NC <0.1	NC NC <0.1		NC N 0.1		NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1	NC NC <0.1
307/1	Stockpile	-	07/04/2020			00 NC	NC NC					NC NC		NC NC						NC NC	NC NC	NC NC			NC NC					NC	NC NC	NC NC	NC NC	NC NC	NC NC I		NC NC
307/2	Stockpile	-	07/04/2020			<4 00 NC	<0.1	<0.1	<0.1		<0.1 C NC NC	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<0.1	<0.1	<0.1 NC NC	<25 NC NC	<50 NC NC	<100 NC NC	220 NC NC	220	<0.1 NC NC	<0.1	<0.1 NC NC		0.1 NC N	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 NC NC	<0.1 NC NC I	<0.1 NC NC I	<0.1
L					200																																

Lab result
HIL/HSL EIL/ESL

value

📙 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:

HIL/HSL/DC

value

EIL/ESL ML

а

b

c d reported naphthalene laboratory result obtained from BTEXN suite

NEPC, Schedule B1 - ML R/P/POS (undefined)

NEPC, Schedule B1 - HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)

NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)

QA/QC replicate of sample listed directly below the primary sample

criteria applies to DDT only

various PQLs for triplicate results

Table B4: Summary of Laboratory Results – Buildings B1 to B5 campared to Waste Classification Criteria

			Metals											OCP															OPP				
			Lead	НСВ	alpha-BHC	gamma-BHC	beta-BHC	Heptachlor	delta-BHC	Aldrin	Heptachlor Epoxide	gamma- Chlordane	alpha-chlordane	Endosulfan I	DDE	Dieldrin	Endrin	DDD	Endosulfan II	DDT	Endrin Aldehyde	Endosulfan Sulphate	Total Endosulfan	Total Analysed OCP	Chlorpyriphos	Chlorpyriphos- methyl	Parathion	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Total Analysed OPP
		PQL	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID B1-1	Depth 0 - 0.05 m	Sample Date 07/04/2020	mg/kg 21	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg 0.1	mg/kg <0.1	mg/kg <0.1	<0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg 0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1	mg/kg <0.1							
B1-2	0 - 0.05 m	07/04/2020	57	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
D4/JRK	0 - 0.05 m	07/04/2020	61	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
T3/JRK	0 - 0.05 m	07/04/2020	72	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NT	NT	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	NT	<0.05	<0.05
B1-3	0 - 0.05 m	07/04/2020	24	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B1-4	0 - 0.05 m	07/04/2020	36	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B2-1	0 - 0.05 m	07/04/2020	63	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B2-2	0 - 0.05 m	07/04/2020	68	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B2-3	0 - 0.05 m	07/04/2020	24	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B2-4	0 - 0.05 m	07/04/2020	76	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B3-1	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B3-2	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B3-3	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B3-4	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B4-1	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
D1/JRK	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B4-2	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B4-3	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B4-4	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B5-1	0 - 0.05 m	07/04/2020	53	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
D2/JRK	0 - 0.05 m	07/04/2020	63	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B5-2	0 - 0.05 m	07/04/2020	10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B5-3	0 - 0.05 m	07/04/2020	39	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B5-4	0 - 0.05 m	07/04/2020	2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	CT1		100	N/A	N/A	N/A	N/A	Waste Clas	sification (Criteria [†] N/A	N/A	N/A	N/A	N/A	N/A	60	~50	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A								
	SCC1		1500	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	108	<50 <50	7.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	7.5
	TCLP1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	CT2		400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	240	<50	16	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16							
	SCC2		6000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	432	<50	30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30							
	TCLP2		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

📕 CT1 exceedance 📕 TCLP1 and/or SCC1 exceedance 🧧 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection

NT = Not tested NC = No criteria AD = Asbestos detected NAD = No asbestos detected

Notes:

QA/QC replicate of sample listed directly below the primary sample а Total chromium used as initial screen for chromium(VI). b Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH) Criteria for scheduled chemicals used as an initial screen Criteria for Chlorpyrifos used as initial screen All criteria are in the same units as the reported results Various PQLs used for triplicate results g PQL Practical quantitation limit CT1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste SCC1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste TCLP1 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid waste CT2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste SCC2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid TCLP2 NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid

Table B5: Summary of Laboratory Results – Buildings B6 to B10 campared to Waste Classification Criteria

			Metals											OCP															OPP				i
			Lead	НСВ	alpha-BHC	gamma-BHC	beta-BHC	Heptachlor	delta-BHC	Aldrin	Heptachlor Epoxide	gamma- Chlordane	alpha-chlordane	Endosulfan I	DDE	Dieldrin	Endrin	DDD	Endosulfan II	DDT	Endrin Aldehyde	Endosulfan Sulphate	Total Endosulfan	Total Analysed OCP	Chlorpyriphos	Chlorpyriphos- methyl	Parathion	Dichlorvos	Dimethoate	Ethion	Fenitrothion	Malathion	Total Analysed OPP
		PQL	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
B6-1	0 - 0.05 m	07/04/2020	25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B6-2	0 - 0.05 m	07/04/2020	13	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B6-3	0 - 0.05 m	07/04/2020	8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B6-4	0 - 0.05 m	07/04/2020	19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B7-1	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B7-2	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B7-3	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B7-4	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
				<0.1							<0.1				<0.1																		
D3/JRK	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
T2/JRK	0 - 0.05 m	07/04/2020	NT	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NT	NT	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	NT	<0.05	<0.05
B8-1	0 - 0.05 m	07/04/2020	10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B8-2	0 - 0.05 m	07/04/2020	210	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B8-3	0 - 0.05 m	07/04/2020	36	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B8-4	0 - 0.05 m	07/04/2020	19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B9-1	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B9-2	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B9-3	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B9-4	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B10-1	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B10-2	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B10-3	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B10-4	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	CT1		100	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	sification C	N/A	N/A	N/A	N/A	N/A	N/A	60	<50	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4
	SCC1		1500	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	108	<50	7.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7.5
	TCLP1		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	CT2		400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	240	<50	16	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16
	SCC2		6000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	432	<50	30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	30
	TCLP2		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

📕 CT1 exceedance 📕 TCLP1 and/or SCC1 exceedance 📒 CT2 exceedance 📕 TCLP2 and/or SCC2 exceedance 📕 Asbestos detection

NT = Not tested NC = No criteria AD = Asbestos detected NAD = No asbestos detected

Notes:

а	QA/QC replicate of sample listed directly below the primary sample
b	Total chromium used as initial screen for chromium(VI).
С	Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)
d	Criteria for scheduled chemicals used as an initial screen
е	Criteria for Chlorpyrifos used as initial screen
f	All criteria are in the same units as the reported results
g	Various PQLs used for triplicate results
PQL	Practical quantitation limit
CT1	NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid waste
SCC1	NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used togethe
TCLP1	NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used togethe
CT2	NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid waste
SCC2	NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used togethe
TCLP2	NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used togethe

ther: General solid waste ther: General solid waste

ther: Restricted solid ther: Restricted solid

Table B6: Summary of Laboratory Results – Assess Path and Stockpiles compared to Wate Classification Criteria

							Metals						TRH					BT	ΓEX			P/	AH	Phenol	0	CP	0	PP	PCB	Coal Tar
				Arsenic	Cadmium	Total Chromium	Lead	Mercury (inorganic)	Selenium	Nickel	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Xylenes (total)	Benzo(a)pyrene (BaP)	Total PAHs	Phenol	Total Endosulfan	Total Analysed OCP	Chlorpyriphos	Total Analysed OPP	Total PCB	Coal Tar ID
			PQL	4	0.4	1	1	0.1	2	1	25	50	100	100	50	0.2	0.5	1	2	1	3	0.05	0.05	5	0.1	0.1	0.1	0.1	0.1	-
Sample ID	Location area	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-
401/0.05	Access track	0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	670	1300	1970	NT	NT	NT	NT	NT	NT	7.6	69	<5	NT	NT	NT	NT	NT	Absent
401/0.15	Access track	0.15 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	160	290	630	1080	NT	NT	NT	NT	NT	NT	0.2	1.7	<5	NT	NT	NT	NT	NT	NT
D1/JPS	Access track	-	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	<0.05	<0.05	<5	NT	NT	NT	NT	NT	NT
402/0.4	Access track	0.4 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	0.06	0.51	<5	NT	NT	NT	NT	NT	NT
404/0.2	Access track	0.2 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	<100	110	110	NT	NT	NT	NT	NT	NT	0.56	9.3	<5	NT	NT	NT	NT	NT	NT
406/0.35 	Access track Access track	0.35 m	07/04/2020	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT	<25 <25	<50	<100 <100	<100	<50 <50	NT NT	NT NT	NT NT	NT NT	NT NT	NT	<0.05	<0.05	<5	NT NT	NT NT	NT NT	NT NT	NT	NT
T1/JPS	Access track	-	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<10	<50	<100	<100	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT
106A/0.25	Access track	0.25 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	130	200	330	NT	NT	NT	NT	NT	NT	<0.05	<0.05	<5	NT	NT	NT	NT	NT	Absent
106A/0.35	Access track	0.35 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	<0.05	<0.05	<5	NT	NT	NT	NT	NT	NT
106A/0.5	Access track	0.5 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	<0.05	<0.05	<5	NT	NT	NT	NT	NT	NT
407/0.28	Access track	0.28 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	83	3300	2600	5983	NT	NT	NT	NT	NT	NT	90	710	<5	NT	NT	NT	NT	NT	Absent
411/0.01	Access track	0.01 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	57	1000	1800	2857	NT	NT	NT	NT	NT	NT	8.5	160	<5	NT	NT	NT	NT	NT	Absent
412/0.15	Access track	0.15 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	<100	<100	<50	NT	NT	NT	NT	NT	NT	0.2	1.4	<5	NT	NT	NT	NT	NT	NT
413/0.15	Access track	0.15 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	<25	<50	100	170	270	NT	NT	NT	NT	NT	NT	2.2	16	<5	NT	NT	NT	NT	NT	NT
301/1	Stockpile	-	07/04/2020	8	<0.4	10	12	<0.1	<2	20	<25	<50	<100	110	110	<0.2	<0.5	<1	<2	<1	<3	0.3	2.6	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
301/2	Stockpile	-	07/04/2020	9	<0.4	8	10	<0.1	<2	13	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3	0.3	2.3	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
301A/2	Stockpile	-	07/04/2020	5	<0.4	12	12	<0.1	<2	11	<25	<50	<100	270	270	<0.2	<0.5	<1	<2	<1	<3	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
303/1	Stockpile	-	07/04/2020	6	<0.4	3	2	<0.1	<2	3	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3	0.2	1.3	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
303/2	Stockpile	-	07/04/2020	6	<0.4	6	4	<0.1	<2	7	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3	0.05	0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
D7/JPS	Stockpile	-	07/04/2020	11	<0.4	11	8	<0.1	<2	15	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3	0.2	0.79	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
T2/JPS	Stockpile	-	07/04/2020	22	<1	13	11	<0.1	<5	14	<10	<50	<100	<100	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05	<0.05	<0.05	<0.05	<0.1	NT
304/1	Stockpile	-	07/04/2020	<4	<0.4	5	6	<0.1	<2	5	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
306/1	Stockpile	-	07/04/2020	6	<0.4	21	15	<0.1	<2	18	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
306/2	Stockpile	-	07/04/2020	6	<0.4	15	16	<0.1	<2	14	<25	<50	160	200	360	<0.2	<0.5	<1	<2	<1	<3	0.62	4.1	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
307/1	Stockpile	-	07/04/2020	<4	<0.4	38	7	<0.1	<2	40	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<2	<1	<3	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
307/2	Stockpile	-	07/04/2020	<4	<0.4	33	10	<0.1	<4	32	<25	<50	<100	220	220 f	<0.2	<0.5	<1	<2	<1	<3	<0.05	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	NT
	C	Γ1		100	20	100	100	4	20	40	650	N/A	Waste C N/A	lassificatio	on Criteria ['] 10000	10	288	600	N/A	N/A	1000	0.8	200	288	60	<50	4	4	<50	N/A
	SC	C1		500	100	1900	1500	50	50	1050	650	N/A	N/A	N/A	10000	18	518	1080	N/A	N/A	1800	10	200	518	108	<50	7.5	7.5	<50	N/A
				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A 2600	N/A	N/A N/A	N/A N/A	N/A 40000	N/A 40	N/A	N/A 2400	N/A N/A	N/A N/A	N/A 4000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A
		C2		400 2000	80 400	400 7600	400 6000	16 200	80 200	160 4200	2600	N/A N/A	N/A N/A	N/A N/A	40000	72	1152 2073	4320	N/A N/A	N/A	7200	3.2 23	800 800	1152 2073	240 432	<50 <50	16 30	16 30	<50 <50	N/A N/A
	TCL			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

CT1 exceedance
 TCLP1 and/or SCC1 exceedance
 CT2 exceedance
 TCLP2 and/or SCC2 exceedance
 Asbestos detection
 NT = Not tested
 NC = No criteria
 AD = Asbestos detected
 NAD = No asbestos detected

Notes:

QA/QC replicate of sample listed directly below the primary sample

Total chromium used as initial screen for chromium(VI).

Total recoverable hydrocarbons (TRH) used as an initial screen for total petroleum hydrocarbons (TPH)

Criteria for scheduled chemicals used as an initial screen

Criteria for Chlorpyrifos used as initial screen

All criteria are in the same units as the reported results

gVarious PQLs used for triplicate resultsPQLPractical quantitation limitCT1NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: General solid wasteSCC1NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid wasteTCLP1NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: General solid wasteCT2NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values of specific contaminant concentration (SCC) for classification without TCLP: Restricted solid wasteSCC2NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solidSCC2NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solidTCLP2NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solidTCLP2NSW EPA, 2014, Waste Classification Guidelines Part 1; Classifying Waste, Maximum values for leachable concentration (TCLP) and specific contaminant concentration (SCC) when used together: Restricted solid

Project 91601.03

Table B7: Laboratory Results for TCLP Testing

				U				
			Benzo(a) Pyrene	Total	PAH	Le	ad
Sample ID	Sample Depth (m)	Fill (F) or Natural (N)	Total	TCLP	Total	TCLP	Total	TCLP
			mg/kg	mg/L	mg/kg	mg/L	mg/kg	mg/L
B8-2	0 - 0.05	F	NA	NA	NA	NA	210	<0.03
413	0.15	F	2.2	<0.001	16	NIL (+)VE	NA	NA
L	aboratory PQ	L	0.05	0.001	0.05	NA	1	0.01
	A - General So Suidelines - Cl		0.8 / 10*	0.04	200	NC	100 / 1500*	5
	- Restricted S uidelines - Cl		3.2 / 23*	0.16	800	NC	400 / 6000*	20

Notes to Table C3:

Total concentrations in mg/kg on a dry weight basis. TCLP results in mg/L.

CT - Concentration Threshold

TCLP - Toxicity Characteristic Leaching Procedure

Shaded results exceed NSW EPA Waste Classification Guidelines for General Solid Waste considering leachability testing

* Criteria when used in conjunction with leachability (TCLP) results

NC – No Criteria

Table B8: Summary of Laboratory Results – ASLP Testing

	Sample ID			413/0.15	···· ···	
	Sample Date			07/04/2020	ANZG (2018) 95% LOP Fresh	NEPC (2013) HSL 2- 4m
		PQL	Units			
	Acenaphthene	0.001	mg/L	<0.001		
	Acenaphthylene	0.001	mg/L	<0.001		
	Benzo(a)anthracene	0.001	mg/L	<0.001		
	Naphthalene	0.001	mg/L	<0.001	16	NL
	Benzo(a)pyrene (BaP)	0.001	mg/L	<0.001		
	Benzo(g,h,i)perylene	0.001	mg/L	<0.001		
PAH	Chrysene	0.001	mg/L	<0.001		
	Dibenzo(a,h)anthracene	0.001	mg/L	<0.001		
	Fluoranthene	0.001	mg/L	<0.001		
	Fluorene	0.001	mg/L	<0.001		
	Indeno(1,2,3-c,d)pyrene	0.001	mg/L	<0.001		
	Phenanthrene	0.001	mg/L	<0.001		
	Pyrene	0.001	mg/L	<0.001		

Notes:

*

QA/QC duplicate of sample listed directly below the primary sample

PQL

Practical quantitation limit

No criterion / not defined / not tested / not applicable

Shaded cell is exceedance of guideline value

Where one or more guideline value is exceeded, the cell is shaded to the colour of the highest guideline value exceeded

NEPC (2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013), health screening level Sand 2-4m

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, 95% level of protection of species for Fresh aquatic ecosystems [NB: 99% level of protection adopted for bioaccumulative chemicals]

HEPA (2018) PFAS National Environmental Management Plan, 99% level of protection for Fresh aquatic ecosystems

NHMRC (2018) Australian Drinking Water Guidelines 6 2011, drinking water aesthetic-based criteria

Project 91601.03

Table B9: Summary of Laboratory Results – Buildings B1 to B5 - Asbestos

						Asb	estos			
			Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Asbestos (500 ml)
		PQL					<0.01		<0.001	0.001
Sample ID	Depth	Sample Date	-	-	-	g	%(w/w)	g	%(w/w)	-
B1-1	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD
B1-2	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD
D4/JRK	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B1-3	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD
B1-4	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD
B2-1	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B2-2	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B2-3	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B2-4	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B3-1	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B3-2	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B3-3	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B3-4	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B4-1	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
D1/JRK	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B4-2	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B4-3	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B4-4	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B5-1	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD
D2/JRK	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT
B5-2	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD
B5-3	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD
B5-4	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD

Project 91601.03

Lab result
HIL/HSL value EIL/ESL value

📕 HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL excee

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:

HIL/HSL/DC	NEPC, Schedule B1 - HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)
EIL/ESL	NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)
ML	NEPC, Schedule B1 - ML R/P/POS (undefined)
а	QA/QC replicate of sample listed directly below the primary sample
b	reported naphthalene laboratory result obtained from BTEXN suite
С	criteria applies to DDT only

Table B10: Summary of Laboratory Results – Buildings B6 to B10 - Asbestos and Fibro Fragments

					1	1	Asbe	estos	1		1	[
			Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Asbestos (500 ml)	Asbestos ID in materials	Total Asbestos
		PQL					<0.01		<0.001	0.001		0.001
Sample ID	Depth	Sample Date	-	-	-	g	%(w/w)	g	%(w/w)	-	-	-
B6-1	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B6-2	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B6-3	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B6-4	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B7-1	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
B7-2	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
B7-3	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
B7-4	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
D3/JRK	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
B8-1	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B8-2	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B8-3	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B8-4	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B9-1	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B9-2	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B9-3	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B9-4	0 - 0.05 m	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NT	NAD
B10-1	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
B10-2	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
B10-3	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
B10-4	0 - 0.05 m	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
F1/JRK	Surface	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	Detected	Detected
F2/JRK	Surface	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	Detected	Detected
F3/JRK	Surface	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NAD	NAD
F4/JRK	Surface	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NAD	NAD
	Surface	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NAD	NAD
F5/JRK				NT	NT	NT	NT	NT	NT	NT	NAD	NAD

Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

Notes:

HIL/HSL/DC	NEPC, Schedule B1 - HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)
EIL/ESL	NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)
ML	NEPC, Schedule B1 - ML R/P/POS (undefined)
а	QA/QC replicate of sample listed directly below the primary sample
b	reported naphthalene laboratory result obtained from BTEXN suite
c	criteria applies to DDT only

Table B11: Summary of Laboratory Results – Stockpiles - Asbestos

			Asbestos								
			Asbestos ID in soil >0.1g/kg	Trace Analysis	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation	ACM >7mm Estimation	FA and AF Estimation	FA and AF Estimation	Asbestos (500 ml)	Total Asbestos#1
		PQL					<0.01		<0.001	0.001	<0.1
Sample ID	Depth	Sample Date	-	-	-	g	%(w/w)	g	%(w/w)	-	g/kg
301/1	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
301/2	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
301A/2	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
303/1	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
303/2	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
D7/JPS	-	07/04/2020	NT	NT	NT	NT	NT	NT	NT	NT	NT
304/1	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
306/1	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
306/2	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
307/1	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD
307/2	-	07/04/2020	NAD	NAD	NAD	NT	NAD	NT	NAD	NAD	NAD

Lab result
HIL/HSL value EIL/ESL value

HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exc

Indicates that asbestos has been detected by the lab below the PQL, refer to the lab report Blue = DC exceedance

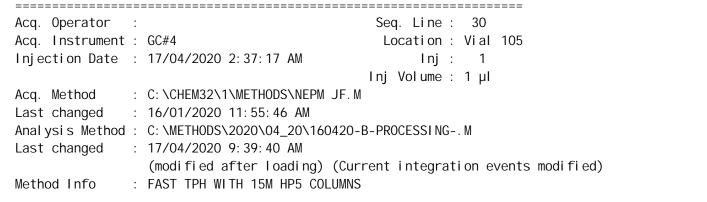
Bold = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

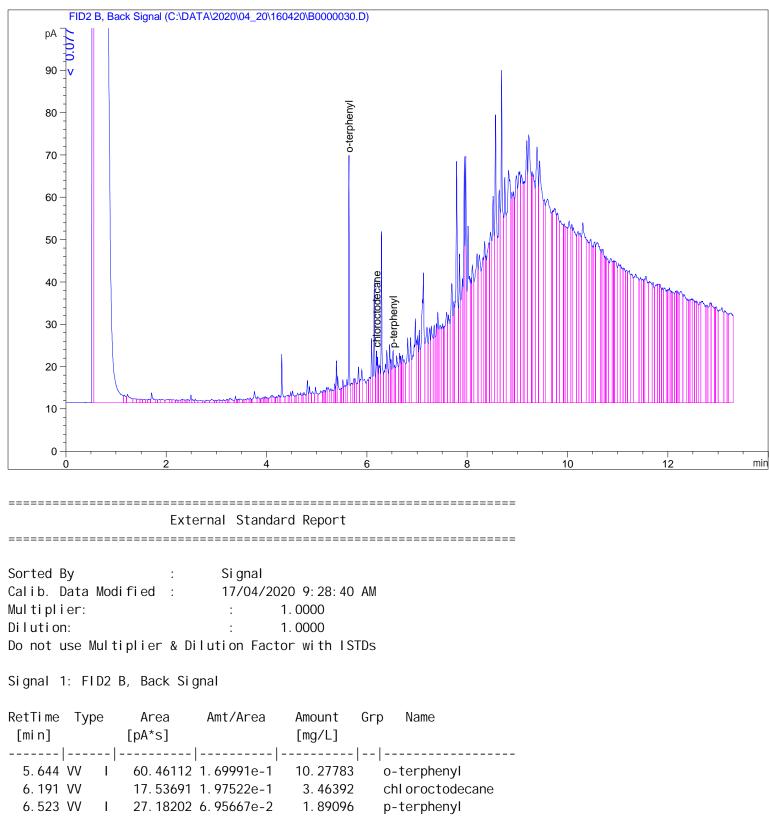
Notes: HIL/HSL/DC EIL/ESL ML

а

b

NEPC, Schedule B1 - HIL A (undefined), HSL A/B (undefined), DC HSL A (undefined)

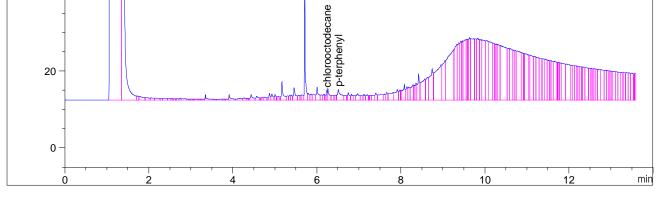

NEPC, Schedule B1 - EIL UR/POS (undefined), ESL UR/POS (undefined)


NEPC, Schedule B1 - ML R/P/POS (undefined)

- QA/QC replicate of sample listed directly below the primary sample
- reported naphthalene laboratory result obtained from BTEXN suite
- c criteria applies to DDT only

Project 91601.03

Data File C:\DATA\2020\04_20\160420\B0000030.D Sample Name: s240645-51 rr



Data File C:\DATA\2020\04_20\160420\B0000030.D Sample Name: s240645-51 rr

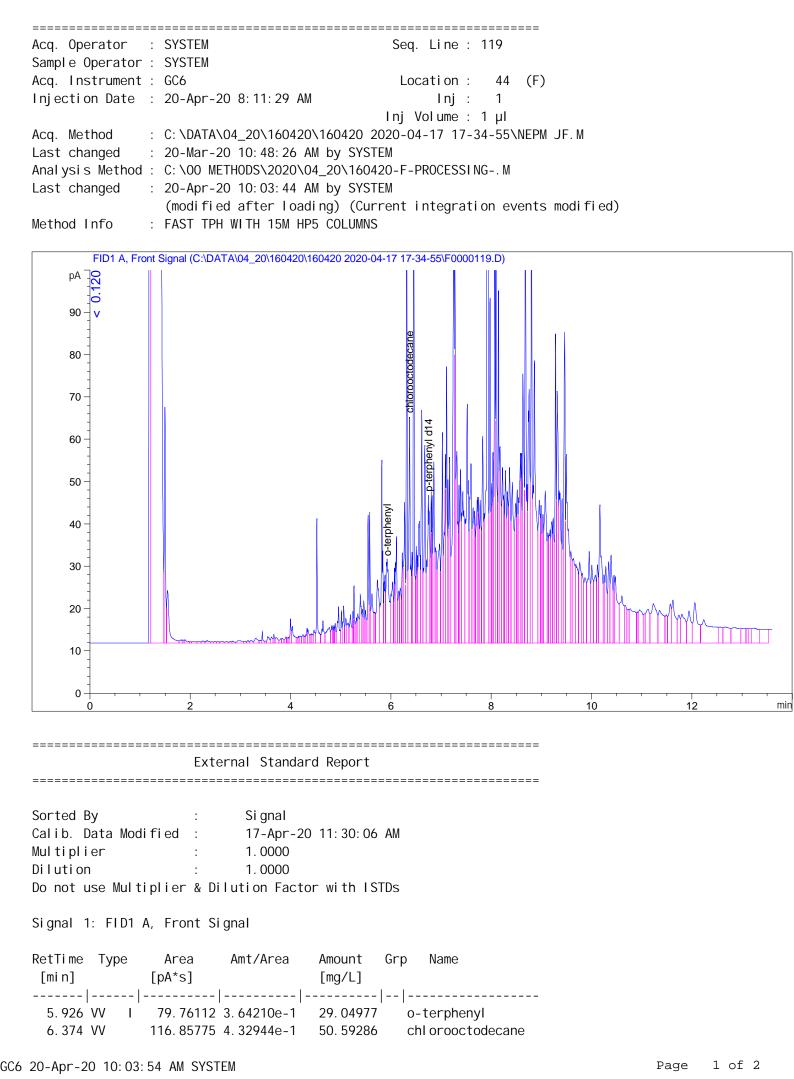
	Area [pA*s]			Grp Name
Totals :	-	-	15. 63271	
	Su	ummed Peaks	Report	
Signal 1: FID2 I	B. Back Sig	nal		
Name	Start Time [min]	End Time [min]	[pA*s]	[mg/L]
TRH C10-C14	2. 100			
NEPM >C10-C16				
TRH C15-C28		7.860		
NEPM >C16-C34				
TRH C29-C36				
NEPM >C34-C40	8.971	10. 390	4184. 92632	706.9470
Totals :			:	2512. 1068
	=======================================			
		Summed Pea	-	
Signal 1: FID2 E	-			
	Total Area [pA*s]	[mg/L]		
	93, 48426	17.1128		
TRH C10-C14				
TRH C10-C14 NEPM >C10-C16		26.5140		
TRH C10-C14 NEPM >C10-C16 TRH C15-C28	144. 84174	26. 5140 337. 6113		
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34	144. 84174 1956. 23723	26. 5140 337. 6113 766. 7096		
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36	144. 84174 1956. 23723 4442. 58142	26.5140 337.6113 766.7096 657.2121		
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl	144. 84174 1956. 23723 4442. 58142 3890. 50930	26.5140 337.6113 766.7096 657.2121		
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl	144. 84174 1956. 23723 4442. 58142 3890. 50930 4184. 92632	26. 5140 337. 6113 766. 7096 657. 2121 706. 9470		
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40	144. 84174 1956. 23723 4442. 58142 3890. 50930 4184. 92632 60. 46112	26. 5140 337. 6113 766. 7096 657. 2121 706. 9470 10. 2778 3. 4639		
TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl chloroctodecane	144. 84174 1956. 23723 4442. 58142 3890. 50930 4184. 92632 60. 46112 17. 53691 27. 18202	26. 5140 337. 6113 766. 7096 657. 2121 706. 9470 10. 2778 3. 4639		

Data File C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D Sample Name: s240645-56 rr

Sample Operator : SYSTEM Acq. Instrument : GC6 Location : 119 (B) njection Date : 20-Apr-20 8: 11: 29 AM Inj : 1 Inj Volume : 1 µl Acq. Method : C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\NEPM JF.M Last changed : 20-Mar-20 10: 48: 26 AM by SYSTEM Analysis Method : C:\OO METHODS\2020\04_20\160420\-B-PROCESSINGM Last changed : 20-Apr-20 9: 57: 22 AM by SYSTEM (modi fied after loading) (Current integration events modi fied) Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) PA 100 40 40 40 40 40 40 40 40 40	Acq. Operator :	SYSTEM	Seq. Line: 119
njection Date : 20-Apr-20 8:11:29 AM Inj : 1 Inj Volume : 1 µl Acq. Method : C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\NEPM JF.M Last changed : 20-Mar-20 10:48:26 AM by SYSTEM Analysis Method : C:\00 METHODS\2020\04_20\160420-B-PROCESSINGM Last changed : 20-Apr-20 9:57:22 AM by SYSTEM (modi fied after loading) (Current integration events modified) Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) PA 100 60 60 60 60 60 60 60 60 60	Sample Operator :	SYSTEM	
Inj Volume : 1 µl Acq. Method : C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\NEPM JF.M Last changed : 20-Mar-20 10: 48: 26 AM by SYSTEM Analysis Method : C:\00 METHODS\2020\04_20\160420-B-PROCESSINGM Last changed : 20-Apr-20 9: 57: 22 AM by SYSTEM (modi fied after loading) (Current integration events modified) Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) PA 100 0 0 0 0 0 0 0 0 0 0 0 0	Acq. Instrument :	GC6	Location: 119 (B)
Acq. Method : C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\NEPM JF.M ast changed : 20-Mar-20 10: 48: 26 AM by SYSTEM Analysis Method : C:\00 METHODS\2020\04_20\160420-B-PROCESSINGM ast changed : 20-Apr-20 9: 57: 22 AM by SYSTEM (modified after loading) (Current integration events modified) Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) PA 100 - V 80 - V	Injection Date :	20-Apr-20 8:11:29 AM	Inj: 1
Last changed : 20-Mar-20 10:48:26 AM by SYSTEM Analysis Method : C:\00 METHODS\2020\04_20\160420-B-PROCESSINGM Last changed : 20-Apr-20 9:57:22 AM by SYSTEM (modified after loading) (Current integration events modified) Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) PA - 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Inj Volume : 1 μl
Anal ysi s Method : C: \00 METHODS\2020\04_20\160420-B-PROCESSINGM .ast changed : 20-Apr-20 9:57:22 AM by SYSTEM (modified after loading) (Current integration events modified) Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) PA 100 - FS 0 v 80 - 60 -	Acq. Method :	C: \DATA\04_20\160420\160	0420 2020-04-17 17-34-55\NEPM JF.M
Last changed : 20-Apr-20 9:57:22 AM by SYSTEM (modified after Loading) (Current integration events modified) Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) PA 100 - FE COLUMNS 0 - FE COLUMNS 0 - FE COLUMNS	0	5	
(modified after Loading) (Current integration events modified) Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) PA 100 - 5 0 0 0 0 0 0 0 0 0 0 0 0 0	-		
Method Info : FAST TPH WITH 15M HP5 COLUMNS FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D) pA 100 1 5 0 pA 100 1 5 0 00 1 6 0 00 1 1	Last changed :		
FID2 B, Back Signal (C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D)			
pA 100 - 50 v 80 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -	Method Info :	FAST TPH WITH 15M HP5 CC	DLUMNS
pA 100 - 50 v 80 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -			
	_	Signal (C:\DATA\04_20\160420\160420) 2020-04-17 17-34-55\B0000119.D)
	pA 5		
	v		
o-terphenyl	80 -		
o-terphenyl	-		
o-terphenyl	-		
o-terphenyl	-		
	60 -		
	-	lyne	
		rphe	
		o-te	
	40 -		

External Standard Report

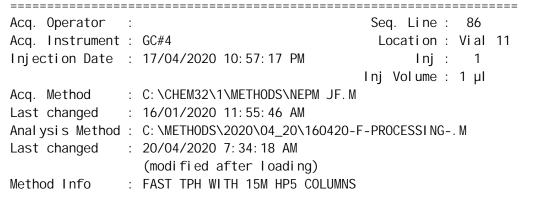
Sorted By Si gnal : Calib. Data Modified : 17-Apr-20 11:01:56 AM Multiplier 1.0000 : Dilution 1.0000 : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: FID2 B, Back Signal RetTime Type Amt/Area Area Amount Grp Name [min] [pA*s] [mg/L]

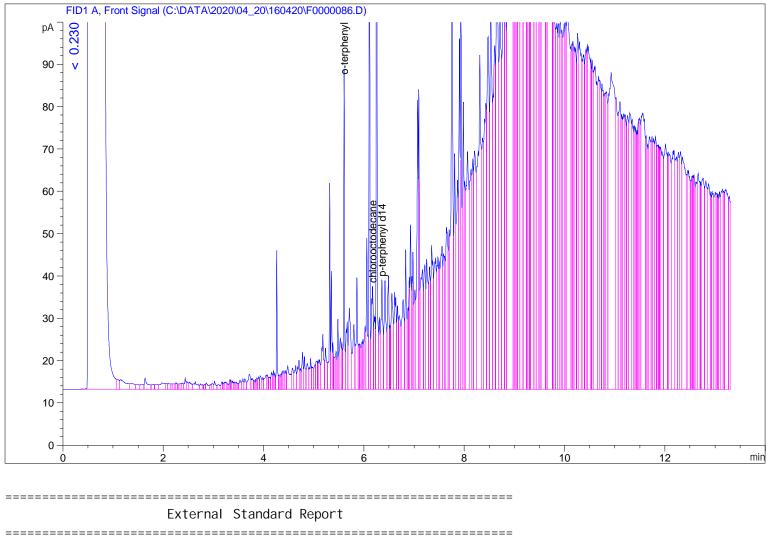

 5. 712
 VV
 I
 39. 00630
 2. 55348e-1
 9. 96018
 o-terphenyl

 6. 238
 VV
 3. 59840
 3. 06552e-1
 1. 10310
 chl orooctodecane

Data File C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\B0000119.D Sample Name: s240645-56 rr

RetTime Type Amt/Area Amount Grp Name Area [min] [pA*s] [mg/L] 6.510 VV 16.53602 1.19392e-1 1.97428 p-terphenyl Totals : 13.03756 _____ _____ Summed Peaks Report _____ Signal 1: FID2 B, Back Signal Signal 1: FID2 B, Back Signal Start Time End Time Total Area Amount Name [min] [min] [pA*s] [mg/L] -----|-----|-----| TRH C10-C142.3904.27537.8764610.6249NEPM >C10-C162.8654.88051.7947514.5292TRH C15-C284.2757.840237.4421363.1439NEPM >C16-C344.8818.910441.46283117.4000TRH C29-C367.8419.220373.1289398.3739NEPM >C34-C408.9119.875845.82122222.9974 Totals : 527.0693 _____ Final Summed Peaks Report _____ Signal 1: FID2 B, Back Signal Name Total Area Amount [pA*s] [mg/L] -----|-----|-----|------| 37. 87646 10. 6249 TRH C10-C14 NEPM >C10-C16 51.79475 14.5292 TRH C15-C28 237.44213 63.1439 NEPM >C16-C34 441.46283 117.4000 TRH C29-C36373. 1289398. 3739NEPM >C34-C40845. 82122222. 9974 o-terphenyl 39.00630 9.9602 chl orooctodecan 3. 59840 1. 1031 16. 53602 1. 9743 p-terphenyl Totals : 540.1068 *** End of Report ***


Data File C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\F0000119.D Sample Name: s240645-59 rr



Data File C:\DATA\04_20\160420\160420 2020-04-17 17-34-55\F0000119.D Sample Name: s240645-59 rr

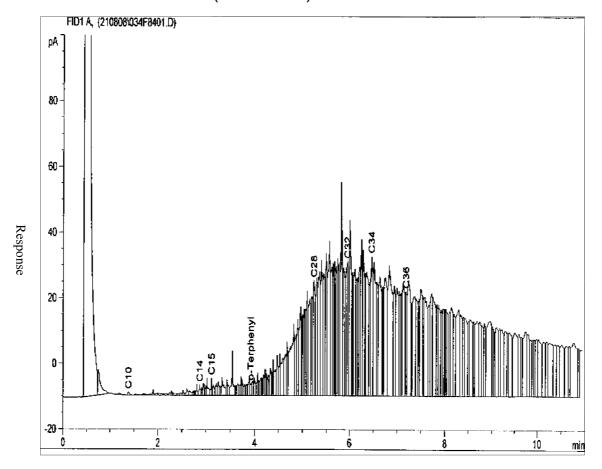
RetTime Type Area Amt/Area Amount Grp Name [min] [pA*s] [mg/L] 6.748 VV I 117.17522 1.61712e-1 18.94865 p-terphenyl d14 Totals : 98.59128 _____ _____ Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Signal 1: FID1 A, Front Signal Start Time End Time Total Area Amount Name [min] [min] [pA*s] [mg/L] -----|-----|-----| 2. 5054. 360103. 6472241. 60292. 9504. 980230. 9328292. 69394. 3617. 9514363. 820371. 645e34. 9819. 0207043. 709182. 655e37. 9519. 3303458. 190671. 293e39. 02110. 0501576. 14574589. 4344 TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 Totals : 6317.1229 _____ Final Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Name Total Area Amount [pA*s] [mg/L] -----|-----|-----|------| TRH C10-C14 103.64722 41.6029 NEPM >C10-C16 230.93282 92.6939 TRH C15-C28 4363.82037 1.645e3 NEPM >C16-C34 7043.70918 2.655e3 TRH C29-C36 3458. 19067 1. 293e3 NEPM >C34-C40 1576.14574 589.4344 o-terphenyl 79.76112 29.0498 chl orooctodecan 116. 85775 50. 5929 p-terphenyl d14 117.17522 18.9486 Totals : 6415.7142 *** End of Report ***

Data File C:\DATA\2020\04_20\160420\F0000086.D Sample Name: s240645-60 rr

Sorted By	:	Signal
Calib. Data Modified	:	17/04/2020 9:34:22 AM
Multiplier:		: 1.0000
Dilution:		: 1.0000
Do not use Multiplier	&	Dilution Factor with ISTDs

Signal 1: FID1 A, Front Signal

RetTime Type Amt/Area Amount Area Grp Name [min] [pA*s] [mg/L] 5.606 VV 90.40099 1.30831e-1 11.82724 o-terphenyl 63.64913 1.53589e-1 6.174 VV 9.77583 chl orooctodecane 6.359 VV 72.26676 5.34858e-2 3.86524 p-terphenyl d14


Data File C:\DATA\2020\04_20\160420\F0000086.D Sample Name: s240645-60 rr

[min] -		Amt/Area				
Totals :			25. 46831			
				=====		
		ummed Peaks	Report ========			
Signal 1: FID1 A		-				
Name	[min]	End Time [min]	[pA*s]	[mg/L]	1
		4. 105				
NEPM >C10-C16	2. 551	4.770	334. 42574	47.	3189	
TRH C15-C28						
NEPM >C16-C34	4.771	8. 951	7637.69093	1.03	6e3	
TRH C29-C36	7.841	9. 310	6792.90830	910.	6097	
NEPM >C34-C40	8.952	10.360	8363. 10427	1. 12	1e3	
Totals :				3660.	1989	
				=====	=====	==========
	Fi nal	Summed Pe				
				=====		
Signal 1: FID1 A	A, Front Sig	====== gnal		=====		
Signal 1: FID1 A	A, Front Sig Total Area	gnal Amount				
Signal 1: FID1 <i>4</i> Name	A, Front Sig Total Area [pA*s]	gnal Amount [mg/L]				
Signal 1: FID1 A Name	A, Front Sig Total Area [pA*s]	gnal Amount [mg/L]				
Signal 1: FID1 A Name TRH C10-C14	A, Front Sig Total Area [pA*s] 200.98054	gnal Amount [mg/L] 28. 4373				
Signal 1: FID1 A Name TRH C10-C14 NEPM >C10-C16	A, Front Sig Total Area [pA*s] 200.98054	gnal Amount [mg/L] 28.4373 47.3189				
Signal 1: FID1 A Name TRH C10-C14 NEPM >C10-C16 TRH C15-C28	A, Front Sig Total Area [pA*s] 200.98054 334.42574	gnal Amount [mg/L] 28.4373 47.3189 516.5664				
Signal 1: FID1 A Name TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34	A, Front Sig Total Area [pA*s] 200. 98054 334. 42574 3807. 66119	gnal Amount [mg/L] 28. 4373 47. 3189 516. 5664 1. 036e3				
Signal 1: FID1 A Name TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36	A, Front Sig Total Area [pA*s] 200. 98054 334. 42574 3807. 66119 7637. 69093	gnal Amount [mg/L] 28.4373 47.3189 516.5664 1.036e3 910.6097				
Signal 1: FID1 A Name TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl	A, Front Sig Total Area [pA*s] 200. 98054 334. 42574 3807. 66119 7637. 69093 6792. 90830 8363. 10427 90. 40099	gnal Amount [mg/L] 28. 4373 47. 3189 516. 5664 1. 036e3 910. 6097 1. 121e3 11. 8272				
Signal 1: FID1 A Name TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl chlorooctodecan	A, Front Sig Total Area [pA*s] 200. 98054 334. 42574 3807. 66119 7637. 69093 6792. 90830 8363. 10427 90. 40099 63. 64913	gnal Amount [mg/L] 28. 4373 47. 3189 516. 5664 1. 036e3 910. 6097 1. 121e3 11. 8272 9. 7758				
Signal 1: FID1 <i>4</i> Name	A, Front Sig Total Area [pA*s] 200. 98054 334. 42574 3807. 66119 7637. 69093 6792. 90830 8363. 10427 90. 40099	gnal Amount [mg/L] 28. 4373 47. 3189 516. 5664 1. 036e3 910. 6097 1. 121e3 11. 8272 9. 7758				
Signal 1: FID1 A Name TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 o-terphenyl chlorooctodecan	A, Front Sig Total Area [pA*s] 200. 98054 334. 42574 3807. 66119 7637. 69093 6792. 90830 8363. 10427 90. 40099 63. 64913 72. 26676	gnal Amount [mg/L] 28. 4373 47. 3189 516. 5664 1. 036e3 910. 6097 1. 121e3 11. 8272 9. 7758				

HYDROCARBON REFERENCE LIBRARY

ASPHALT (no coal tar)

Retention Time (minutes)

The Envirolab reference chromatogram library was compiled using compounds found in petroleum products, standards, natural products and readily available commercial products.

The components with the lowest boiling points tend to volatilize more rapidly than the components with higher boiling points. On the reference chromatograms, the components that have the shortest retention times (left side of the GC trace) are the most volatile and will tend to decrease in peak intensity preferentially as more volatilization takes place.

These reference chromatograms can be used as a guide for comparison with unknown samples to help identify the contaminants.

The o-Terphenyl peak is the TPH surrogate used in our extraction.

HYDROCARBON REFERENCE LIBRARY Env)rola COAL FID1 A, (0:\GC#1\DATA\11_08\211108\041FB501.D) pA -90 80 70 Terpheny 60 ŧ, Response 50 40 -30 C36 0 0.34 20 č

Retention Time (minutes)

10

0

2

The Envirolab reference chromatogram library was compiled using compounds found in petroleum products, standards, natural products and readily available commercial products.

6

ġ

10

min

The components with the lowest boiling points tend to volatilize more rapidly than the components with higher boiling points. On the reference chromatograms, the components that have the shortest retention times (left side of the GC trace) are the most volatile and will tend to decrease in peak intensity preferentially as more volatilization takes place.

These reference chromatograms can be used as a guide for comparison with unknown samples to help identify the contaminants.

The o-Terphenyl peak is the TPH surrogate used in our extraction.

Appendix C

Quality Control and Quality Assurance Chain of Custody Sheets (Field and Despatch) Sample Receipt

Data Quality Assessment Report Report on Supplementary Investigation Proposed School Lot 100, DP1261496 Maitland Street, Muswellbrook NSW

1. Data Quality Objectives

1.1 Data Quality Objectives (DQOs)

The Supplementary DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process, which is provided in Appendix B, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

Step 1 - State the Problem

The proposed development involves the demolition of existing structures and construction of a new school facility. Previous investigations have identified potential sources of soil contamination associated with the site's history. The 'problem' to be addressed is that the extent and nature of potential contamination on site is not fully understood. The objective of the supplementary investigation is therefore to assess the nature and extent of contamination at the site and make recommendations for remediation (where required) to render the site suitable for the proposed redevelopment works. Where required, options for the management or disposal of excess soils from site redevelopment will also be provided.

DP's project team included a Principal / Project Manager, field engineers and excavation subcontractor. The decision maker was the DP Principal / Project Manager.

Step 2 - Identify the Decision

Based on the site history, it is considered that the contaminants of concern are various organic and inorganic compounds impacting on soil (refer to the CSM in Section 6). As such, the analysis will focus on those contaminants relevant to the identified media.

The analytical data for soil will be compared to relevant SAC including HIL, HSL, EIL and ESL for an educational facility as per Tables 1A and 1B in Schedule B1, NEPC (2013).

The suitability of the site for the proposed development will be based on a comparison of the analytical results for all contaminants of concern to the adopted SAC. If necessary, results will also be compared to the 95% UCL of the mean concentrations (relevant to soil contamination under certain circumstances).

The following specific decisions will be made, as appropriate:

- What is the conceptual site model (ie sources, receptors, migration pathways, exposure)?
- Do the existing fill materials and/or natural soils pose a potential risk to identified receptors?
- Does the existing groundwater beneath the site pose a potential risk to identified receptors?
- Does the existing soil gas/soil vapour beneath the site pose a potential risk (toxic, explosion or asphyxiation) to identified receptors?
- Is the data sufficient to make a decision regarding the abovementioned risks, the compatibility of the site for the proposed development or are additional investigations required?
- Are there any off-site migration issues that need to be considered?
- What are the waste management requirements for excess soils associated with the development?
- Is the data sufficient to enable the preparation of a Remediation Action Plan (RAP) and/or Environmental Management Plan (EMP) should the data suggest these are required?

Step 3 - Identify the Inputs to the Decision

Inputs into the decisions are as follows:

- Collection and review of site history information including information regarding previous and current activities undertaken on the site and the surrounding areas;
- Review of previous investigations undertaken;
- Regional geology, topography, ASS risk mapping and hydrogeology;
- Soil samples will be collected at targeted locations and analysed for the relevant contaminants of concern;
- Screening for potential volatile organic compounds (ie soil vapour) will be conducted using a PID;
- The lithology of the site as described in the test pit logs and sample descriptions;
- If site conditions suggest additional contaminants of concern, eg if the condition of subsurface material encountered whilst drilling encounter particular odours, further analysis may be undertaken;
- Field and laboratory QA/QC data to assess the suitability of the environmental data for the assessment;
- All analysis undertaken at a NATA accredited laboratory; and
- The results will be compared with the SAC discussed below.

Step 4 - Define the Boundary of the Assessment

The study boundary is as shown on Drawing 1, Appendix D.

Step 5 - Develop a Decision Rule

The information obtained during the assessment will be used to characterise the site in terms of contamination issues and risk to human health and/or the environment. The decision rules used in characterising the site will be as follows:

- Laboratory test results for fill/soil will be assessed individually or statistically, if considered appropriate, to determine the 95% UCL of the mean concentration for each analyte or analyte group (of like materials);
- Laboratory test results for targeted locations (and identified 'hot spots') will be assessed individually;
- The adopted SAC will be from NSW EPA endorsed guidelines;
- Where such criteria are not available, other recognised national or international standards will be used;
- The contaminant concentrations in fill / soil should meet the following criteria, or further investigation or remedial action is required if:
 - The concentration of the contaminant is more than 2.5 times the SAC. Any location more than 2.5 times the adopted site criteria is classified as a 'hotspot', requiring further assessment / management; and
 - o The calculated 95% UCL for a relevant area and discrete impacted fill/soil stratum (excluding any 'hotspot' concentrations) exceeds the adopted SAC;
 - o The standard deviation of the results is greater than 50% of the SAC;
- Further investigation, remediation and/or management will be recommended if the site is found to be contaminated or containing contamination 'hot spots'.

Step 6 - Specify Acceptable Limits on Decision Errors

Considering the future site use / development, decision errors for the respective contaminants of concern for fill / soil are:

- 1. Deciding that the sites fill / soil exceeds the SAC when they truly do not; and
- 2. Deciding that the sites fill / soils are within the SAC when they are truly not.

Decision errors for the proposed assessment will be minimised and measured by the following:

- Compare new data with available previous investigations to determine the possible range of the parameters of interest;
- The sampling regime will target key strata identified to account for site variability;
- Sample collection and handling techniques will be with reference to DPs Field Procedures Manual;
- Samples will be prepared and analysed by a NATA accredited laboratory with the acceptance limits for laboratory QA/QC parameters based on the laboratory reported acceptance limits and those stated in NEPC (2013);
- The analyte selection is based on the available site history, past site activities, site features and the findings of the previous investigations. The potential for contaminants other than those proposed to be analysed is currently considered to be low;
- The SAC will be adopted from established and EPA endorsed guidelines where available. The SAC have risk probabilities already incorporated;
- Only NATA accredited laboratories using NATA endorsed methods will be used to perform laboratory analysis. Where NATA endorsed methods are not used, the reasons will be stated. The effect of using non-NATA methods (if relevant) on the decision making process will be explained.

Step 7 - Optimise the Design for Obtaining Data

Sampling design and procedures that will be implemented to optimise data collection for achieving the DQOs included the following as stated in the Auditor approved SAQP (DP 2020):

- Only NATA accredited laboratories using NATA endorsed methods are used to perform laboratory analysis whenever possible;
- Targeted soil sampling (within access constraints) will generally be used to provide supplementary information at the site;
- To optimise the selection of soil samples for chemical analysis, samples collected will be screened using a calibrated PID allowing for site assessment and sample selection. In addition, additional soil samples will be collected but kept 'on hold' pending details of initial analysis and will be analysed if further delineation is required; and

Adequately experienced environmental scientists / engineers were chosen to conduct field work and sample analysis interpretation.

2. Data Quality Indicators

The reliability of field procedures and analytical results were assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present onsite;
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following table.

Table C1: Data Quality Indicators

DQO	Frequency	Data Acceptance Criteria
Compl	eteness	
Field documentation correct	All samples	All samples
Soil bore logs complete and correct	All samples	All samples
Suitably qualified and experience sampler	All samples	All samples
Appropriate lab methods and limits of reporting (LORs)	All samples	All samples
Chain of custodies (COCs) completed appropriately	All samples	All samples
Sample holding times complied with	All samples	All samples
Proposed/critical locations sampled	-	Proposed/critical locations sampled
Comp	arability	
Consistent standard operating procedures for collection of each sample. Samples should be collected, preserved and handled in a consistent manner	All samples	All samples
Experienced sampler	All samples	All samples
Consistent analytical methods, laboratories and units	All samples	All samples
Represer	itativeness	
Sampling appropriate for media and analytes (appropriate collection, handling and storage)	All samples	All Samples
Samples homogenous	All samples	All Samples
Samples extracted and analysed within recommended holding times	All samples	-

Table C1: Data Quality Indicators (cont)

DQO	Frequency	Data Acceptance Criteria
Pre	cision	
Blind duplicates (intra-laboratory duplicates)	1 per 20 samples	30% RPD, then review RPDs >30% would be reviewed in relation to heterogeneity of sample and LOR
Laboratory duplicates	1 per 20 samples	<20% RPD Result > 20 × LOR <50% RPD Result 10-20 × LOR No Limit when RPD Result <10 × LOR
Acc	uracy	
Surrogate spikes	All organic samples	50-150%
Matrix spikes	1 per 20 samples	70-130% (inorganics) 60-140% (organics)
Laboratory control samples	1 per 20 samples	70-130% (inorganics) 60-140% (organics)
Method blanks	1 per 20 samples	<lor< td=""></lor<>

3. Field Quality Assurance and Quality Control

3.1 Overview

The field QC procedures for sampling as prescribed in the DP *Field Procedures Manual* were followed at all times during the investigation.

3.2 Sampling Team and Weather Conditions

Field sampling was undertaken by DP Environmental Engineers; Paulo Sebastian and Josh Kramer. Site works were undertaken on 7 April 2020. All members of the sampling team were instructed by the Project Manager regarding the sampling methods to be adopted. The same approach to the sampling was applied by each team member, minimising the potential for field sampling related variations in test outcomes.

Climatic or weather conditions are not considered to have impeded or significantly impacted the investigation.

3.3 Sample Collection

Soil samples were collected from the test pit. Further details of the sampling methodology are presented in Report Section 7. The QA/QC samples collected during the course of soil sampling comprised the following:

- Seven intra-laboratory replicates (10% of soil samples analysed), achieving the target of 10%; and
- Four inter-laboratory replicates (5% of soil samples analysed), achieving the target of 5%;

3.4 Logs

Logs for each soil sampling location were recorded in the field. The individual samples were recorded on the field logs along with the sample identity, depth, replicate sample locations, and observations. Logs are presented in Appendix A.

3.5 Decontamination Procedure

Where stainless steel sampling equipment was required the re-used sampling equipment was decontaminated between each use. Decontamination for (soil) sampling was undertaken for the re-used equipment (eg stainless steel trowel) prior to sample collection.

The decontamination procedure involved a three stage wash. The equipment was first rinsed with tap water (and a brush where required) to remove sediment followed by a 3% Decon 90 solution.

3.6 Chain of Custody

Chain of custody information was recorded on the Chain-of-Custody (COC) sheets which accompanied samples to the analytical laboratory. Signed copies of COCs are presented in Appendix C, following the laboratory certificates of analysis.

The COC documented, *inter alia*, the analytical laboratory, dispatch courier, DP dispatcher, date, time, sample identifications, sample type and date and analysis to be performed on each sample.

3.7 Field Replicates

Replicate samples were collected in the field as a measure of accuracy, precision and repeatability of the results.

Field replicate samples for soil were collected from the same location and an identical depth to the primary sample. Equal portions of the subject material were placed into the primary and replicate sampling jars and sealed. The sample was not homogenised so as to minimise the possible loss of volatiles. Replicate samples were labelled with a DP identification number, recorded on DP's field logs, so as to conceal their relationship to their primary sample from the analytical laboratory.

A measure of the consistency of results is derived by the calculation of relative percentage differences (RPDs) for replicate samples. A RPD of +/- 30% is generally considered acceptable for inorganic analytes by the industry, although in general a wider RPD range (50%) may be acceptable for organic analytes. RPDs above the generally acceptable limits (if applicable) are shown in **bold** on the relevant tables below.

3.7.1 Intra-Laboratory Analysis

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory Envirolab Services Pty and as a measure of consistency of sampling techniques. The comparative results of analysis between original and intra-laboratory replicate samples are summarised in Table C2.

Note that, where both samples are below LOR/PQL the difference and RPD has been given as zero. Where one sample is reported below LOR/PQL, but a concentration is reported for the other, the LOR/PQL value has been used for calculation of the RPD for the less than LOR/PQL sample.

			Metals	1							C	ЮР								OPP								1	Complete	e OPP suite	;			
			Lead	DDT+DDE+DDΰ	DDD	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	alpha-chlordane	gamma-Chlordane	Total Endosulfan	Endosulfan I	Endosulfan II	Endosulfan Sulphate	Endrin	Heptachlor	Hexachlorobenze ne	Methoxychlor	Chlorpyriphos	alpha-BHC	beta-BHC	Bromophos-ethyl	Chlorpyriphos- methyl	delta-BHC	Diazinon	Dimethoate	Endrin Aldehyde	Lindane	Heptachlor Epoxide	Azinphos methyl (Guthion)	Ethion	Fenitrothion	Ronnel (fenchlorphos)
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
D4/JRK	0 - 0.05 m	07/04/2020	61	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B1-2	0 - 0.05 m	07/04/2020	57	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Difference		4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD		7%	0%	0%	0%	0%	67%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
T3/JRK	0 - 0.05 m	07/04/2020	72	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	NT	NT	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NT	<0.05	<0.05	<0.05	NT	NT
B1-2	0 - 0.05 m	07/04/2020	57	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Difference		15	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N∕A	N⁄A	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD		23%	0%	0%	0%	0%	N/A	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	N/A	0%	0%	0%	N/A	N/A
D1/JRK	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B4-1	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Difference		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD		N/A	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
D2/JRK	0 - 0.05 m	07/04/2020	63	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B5-1	0 - 0.05 m	07/04/2020	53	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Difference		10	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD		17%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
D3/JRK	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
B7-4	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Difference		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD		N/A	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
T2/JRK	0 - 0.05 m	07/04/2020	NT	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	NT	NT	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NT	<0.05	<0.05	<0.05	NT	NT
B7-4	0 - 0.05 m	07/04/2020	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Difference	E	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD			0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	N/A	0%	0%	0%	N/A	N/A

Table C2: Results of Quality Control Analysis – Building Surface Samples

Table C3: Results of Quality Control Analysis – Test Pits

					TRH					PA	ΛH		Phenol						Complete	PAH suite								TRH		
			TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs	Phenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthrac ene	Benzo(g,h,i)peryl ene	Chrysene	Dibenzo(a,h)anthr acene	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Phenanthrene	Pyrene	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
D1/JPS	-	07/04/2020	<25	<50	<25	NT	<100	<100	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50
401/0.15	0.15 m	07/04/2020	<25	150	<25	NT	620	720	<0.1	0.2	<0.5	1.7	<5	<0.1	<0.1	<0.1	<0.1	0.3	0.1	<0.1	0.2	<0.1	0.2	<0.1	0.2	<25	160	290	630	1080
	Difference		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD		0%	N/A	0%	N/A	N/A	N/A	0%	N/A	0%	N/A	0%	0%	0%	0%	0%	N/A	0%	0%	N/A	0%	N/A	0%	N/A	0%	N/A	N/A	N/A	N/A
D3/JPS	-	07/04/2020	<25	<50	<25	NT	<100	<100	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50
406/0.35	0.35 m	07/04/2020	<25	<50	<25	NT	<100	<100	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50
	Difference		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD		0%	0%	0%	N/A	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
T1/JPS	-	07/04/2020	<25	<50	<25	NT	<100	<100	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50
406/0.35	0.35 m	07/04/2020	<25	<50	<25	NT	<100	<100	<0.1	<0.05	<0.5	<0.05	<5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50
	Difference		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	RPD		0%	0%	0%	N/A	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table C4: Results of Quality Control Analysis – Stockpile Samples

	*****		*****			******	Metals	****		*****	****			TI	RH	****	****		BT	EX	*****		Pł	۹H		Phenol
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc	Manganese	TRH C6 - C10	TRH >C10-C16	F1 ((C6-C10)- BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-C34)	F4 (>C34-C40)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene ^b	Benzo(a)pyrene (BaP)	Benzo(a)pyrene TEQ	Total PAHs	Phenol
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
D7/JPS	-	07/04/2020	11	<0.4	11	52	8	<0.1	15	210	220	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2	<0.5	0.79	<5
303/2	NA	07/04/2020	6	<0.4	6	23	4	<0.1	7	120	110	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.05	<0.5	0.05	<5
	Difference		5	N/A	5	29	4	N/A	8	90	110	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.15	N/A	0.74	N/A
	RPD		59%	0%	59%	77%	67%	N/A	73%	55%	67%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	120%	0%	176%	0%
T2/JPS	-	07/04/2020	22	<1	13	50	11	<0.1	14	246	245	<10	<50	<10	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
303/2	NA	07/04/2020	6	<0.4	6	23	4	<0.1	7	120	110	<25	<50	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.05	<0.5	0.05	<5
	Difference		5	N/A	5	29	4	N/A	8	90	110	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.74	N/A
	RPD		114%	0%	74%	74%	93%	0%	67%	69%	76%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

Table C4: Results of Quality Control Analysis – Stockpile Samples (Continued)

				OCP													OPP				P	СВ					
Sample ID	Depth	Sample Date	DDT+DDE+D(D ^c	DDD	DDE	DDT	Aldrin & Dieldrin	Total Chlordane	alpha- chlordane	gamma- Chlordane	Total Endosulfan	Endosulfan I	Endosulfan II	Endosulfan Sulphate	Endrin	Heptachlor	Hexachlorobe nzene	Methoxychlor	Chlorpyriphos	Arochlor 1016	Total PCB	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Aroclor 1260
D7/JPS	0 m	07/04/2020	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
303/2	0 m	07/04/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Difference		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	RPD		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
T2/JPS	0 m	07/04/2020	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
303/2	0 m	07/04/2020	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	NT	NT	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	NT	<0.1	NT	NT	NT	NT	NT	NT
	Difference		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	RPD		0%	0%	0%	0%	0%	0%	N/A	N/A	0%	0%	0%	0%	0%	0%	0%	0%	0%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table C4: Results of Quality Control Analysis – Stockpile Samples (Continued)

B			Adr	litional metal	s						Complete	PAH suite								TRH			1				Complete	OCP suite						Complete	e OPP suite	
			,								complete			-,													complete							complete	- Off Outo	
ample ID	Depth	Sample Date	Aluminium	Izon	Selenium (Total)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthra cene	Benzo(g,h,i)per y lene	Chrysene	Dibenzo(a,h)ant hracene	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Phenanthrene	Pyrene	TRH C6 - C9	TRH C10 - C14	TRH C15 - C28	TRH C29 - C36	C10-C36 recoverable hydrocarbons	alpha-BHC	beta-BHC	Bromophos- ethyl	Chlorpyriphos- methyl	delta-BHC	Diazinon	Dimethoate	Endrin Aldehy de	Lindane	Heptachlor Epoxide	Az inphos methyl (Guthion)	Ethion	Fenitrothion	Ronnel (fenchlornhos)
D7/JPS	0 m	07/04/2020	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k
303/2	0 m	07/04/2020	7000	20000	<2	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	0.1	<25	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Difference	9	3300	8000	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	RPD		3700	12000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
T2/JPS	0 m	07/04/2020	72%	86%	0%	0%	0%	0%	0%	N/A	0%	0%	0%	0%	0%	0%	N/A	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
303/2	0 m	07/04/2020	6370	20100	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100	<50	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NT	<0.05	<0.05	<0.05	NT	NT
	Difference	9	3300	8000	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	RPD		63%	86%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	N/A	0%	0%	0%	N/A	N/A

Notes to Tables C2, C3 and C4:

NA - Not Applicable

NT - Not Tested

Sample D4/JRK is replicate sample of B1-2

Sample T3/JRK is triplicate sample of D4/JRK and B1-2

Sample D1/JRK is replicate sample of B4-1

Sample D2/JRK is replicate sample of B5-1

Sample D3/JRK is replicate sample of B7-4

Sample T2/JRK is triplicate sample of D3/JRK and B7-4

Sample D1/JPS is replicate sample of 406/0.35

Sample D3/JPS is replicate sample of 401/0.15

Sample T1/JPS is triplicate sample of D3/JPS and 401/0.15

Sample D7/JPS is replicate sample of 303/2

Sample T2/JPS is triplicate sample of D7/JPS and 303/2

The calculated RPD values were generally within the acceptable range with the exception of those in bold. However, this is not considered to be significant because:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred. High RPD values reflect the small differences between two small numbers;
- The number of replicate pairs being collected from fill soils which by its nature is heterogeneous;
- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the LOR/PQL. High RPD values reflect the low concentrations;
- The majority of RPDs within a replicate pair being within the acceptable limits;
- All other QA/QC parameters met the DQIs.

Overall, the intra-laboratory replicate comparisons indicate that the sampling techniques were generally consistent and repeatable. An explanation will be required if this is not the case.

3.7.2 Inter-Laboratory Analysis

Inter-laboratory replicates were conducted as a check of the reproducibility of results between the primary laboratory Envirolab Services Pty and the secondary laboratory ALS Environmental and as a measure of consistency of sampling techniques.

The comparative results of analysis between original and inter-laboratory replicate samples are summarised in above Tables C2 to C4.

Note that, where both samples are below LOR/PQL the difference and RPD has been given as zero. Where one sample is reported below LOR/PQL, but a concentration is reported for the other, the LOR/PQL value has been used for calculation of the RPD for the less than LOR/PQL sample.

The calculated RPD values were generally within the acceptable range with the exception of those in bold. However, this is not considered to be significant because:

- The typically low actual differences in the concentrations of the replicate pairs where some RPD exceedances occurred. High RPD values reflect the small differences between two small numbers;
- The number of replicate pairs being collected from fill soils which by its nature is heterogeneous;
- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations being relatively close to the LOR/PQL. High RPD values reflect the low concentrations;
- The majority of RPDs within a replicate pair being within the acceptable limits;
- All other QA/QC parameters met the DQIs.

The overall inter-laboratory replicate comparisons indicate that the sampling technique was generally consistent and repeatable and the two laboratory sampling handling and analytical methods are comparable.

3.8 Field Instrument Calibration

The photoionisation detector (PID) fitted with a 10.6 eV lamp was calibrated and serviced at Australian Scientific on 20 February 2020 and calibrated with isobutylene gas on the day prior to the soil sampling programme.

4. Laboratory Quality Assurance and Quality Control

4.1 Chain of Custody

Chain-of-custody procedures are discussed in Section 3.5.

4.2 Analytical Laboratories

Samples were submitted to the following laboratories for analysis:

- Primary Laboratory: Envirolab Services Pty Ltd (ELS);
- Secondary Laboratory: ALS Environmental.

The laboratories are both NATA accredited for the analysis undertaken.

4.3 Holding Times

A review of the laboratory certificates of analysis and chain-of-custody documentation indicated that holding times were met.

4.4 Analytical Methods

The laboratory analytical methods are provided on the laboratory certificates of analysis in Appendix B, along with the PQL/LOR.

4.5 Laboratory Replicate Results

Laboratory replicates are additional portions of a sample which are analysed in the same manner as the other samples. Laboratory replicate samples were generally analysed at a rate of 1 for every 10 samples in a batch. The average RPD for individual contaminants were generally within the laboratory acceptance limits.

4.6 Laboratory Blank (Reagent Blank) Results

The laboratory blank, sometimes referred to as the method blank or reagent blank is the sample prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, it can be determined by processing solvents and reagents in the same manner as for samples. Laboratory blanks are generally analysed at a frequency of 1 in 20, with a minimum of one per batch.

All results should be less than the method PQL or LOR. The report results for the method blanks were generally within the acceptance criteria for both laboratories.

4.7 Matrix Spike

The matrix spike is a sample replicate prepared by adding a known amount of analyte prior to analysis, and then treated exactly the same as all other samples. The recovery result indicates the proportion of the known concentration of the analyte that is detected during analysis. The laboratory acceptance criteria for matrix spike recoveries for ELS is as follows.

Table C5 Laboratory Matrix Spike Acceptance Criteria

Laboratory	Analyte(s)	Accepted Recoveries
	Inorganics / metals	70 – 130%
ELS	organics	60 – 140%
	SVOC and speciated phenols	10 – 140%

The laboratory QC for matrix spikes were generally within the acceptance criteria for both laboratories.

4.8 Surrogate Spike

The surrogate spike sample is prepared by adding a known amount of surrogate, which behaves similarly to the analyte, prior to analysis of each sample. The recovery result indicates the proportion of the known concentration of the surrogate that is detected during analysis. The laboratory acceptance criteria for surrogate spike recoveries for ELS is as follows.

The laboratory QC for surrogate spikes were generally within the acceptance criteria for both laboratories.

4.9 Reference / Laboratory Control Sample (LCS)

This sample comprises spiking either a standard reference material or a control matrix (such as a blank of sand or water) with a known concentration of specific analytes. The LCS is then analysed and results compared against each other to determine how the laboratory has performed with regard to sample preparation and analytical procedure. LCSs are generally analysed at a frequency of 1 in 20, with a minimum of one analysed per batch.

The laboratory acceptance criteria for LCS recoveries for ELS is as follows.

Laboratory	Analyte(s)	Accepted Recoveries
	Inorganics / metals	70 – 130%
ELS	organics	60 – 140%
	SVOC and speciated phenols	10 – 140%

The laboratory QC for LCSs were generally within the acceptance criteria for both laboratories.

4.10 Laboratory Comments

The laboratory QC for replicates, reagent blanks, matrix spikes, surrogate spikes, and LCS were generally within the acceptance standards. The results of the review of the laboratory QC by DP, including discussion of any non-conformities with the acceptance criteria, are presented in Table C7 below. In addition, some comments relevant to QA/QC were made in the laboratory certificates of analysis which are also summarised in Table C7.

Certificate of Analysis	Laboratory	Laboratory Comment	DP Comment
		The PQL has been raised for Selenium due to interferences from analytes (other than those being tested) in sample 240645-74.	ОК
		Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However, an acceptable recovery was obtained for the LCS.	ОК
240645	ELS	Asbestos-ID in soil: NEPM. This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.	ОК
		All samples analysed as received. However, samples 240645-21, 22, 29, 31, 36, 65, 66, 67, 68, 71, 73, 74 are below the minimum 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.	The samples tested did not contain indicators of potential asbestos impacts (ie general absence of building materials). A slightly reduced volume of sample tested is therefore not considered to be significant nor impact on the results of testing.
		PAHs in Soil - The RPD for duplicate results is accepted due to the non homogenous nature of sample 240645-51.	ОК
240645 - A	ELS	No comments	-
ES2012239	ALS	No comments	-

Table C7: Laboratory QC Comments

5. QA/QC Data Evaluation

An evaluation of field and laboratory QA/QC information against the stated DQOs has been undertaken. Overall, the SOPs were generally complied with in the field, and the laboratory quality control samples were generally within the laboratory acceptance criteria. The QC non-conformances, where they occurred, are not considered to have significantly impacted the quality of the results overall as they were generally minor in number compared to the overall QC data. On this basis, it is considered that an acceptable level of laboratory precision and consistency was achieved and that the laboratory data sets are reliable and useable for this assessment.

Douglas Partners Pty Ltd

Geotecnine.	, canadano					Ç .	1. A	to usting 1	40				
Project No: 91	601.03			Client Proje Location:	ect Name:	Jupp.	ch an	invest agerti	AL	-			
Client: Pacific	Gast Chri	stian School	Ctal	Location:	lot 62	Martlen	St; 101	usweiless	DP Lab Re	eceived	By:	TPS	Date: 8/4/20
				_/ _					toro in acc	ordance wi	th FPM HA	ZID)	
Project Manaç Do samples c	ontain 'p	otential' HB	M? Yes	/ No L	(If YES, th	en hand	le, transp	on and s					Notes
				ield					DP Lab	Fo	or Despaid	h to	Notes
Sample	Depth	Duplicate	Sample	Container	ASS		Sampling	1	Storage Locn*	Envirolab	ALS		
ID	(m)	Sample	Type S-soil	Type G-glass	Samples	Ву	Date	Time		8/4/20	8/4/20		
			W water	P-plastic		JPS	2/01/20	3	Ester	\checkmark			
301/1			5	6,8		240	7/4/20	2	15500	\checkmark			
301/2										V			
351 4/1													
301A/2										V			
303/1		ezt.								V	\checkmark		
303 /2		D7/585/72/5	es								V		
304/1										\checkmark			
304/2													
306/1		<u>i</u>						\checkmark		\checkmark			
1		RAB				L	9	5	J	~			
2,96 2		ISP. M											
				_									
									-				

Douglas Partners

CHAIN OF CUSTODY FIELD SHEET

Geotechnic	S I Environme					(./. A	1. usting 1	120				
Project No: 9	1601.03			Client Proje	ect Name:	Jup	al an	muest ngent	Alt				
Client: Pacific	Gast Chris	stian School	Ltal	Location:	lot 62	Martler	st, M	uswell 080	DP Lab R	eceived	By: 🤈	785	Date: 8/4/20
									toro in acc	ordance w			
Project Manag Do samples o	ontain 'po	otential' HE	BM? Yes	🛛 No 🗌	(If YES, the	en hand	dle, transp	ort and s	store in acc				Notes
				Field					DP Lab	F	or Despatch	to	Notes
Sample	Depth	Duplicate	Sample	Container	ASS		Sampling)	Storage Locn*	Envicolab	ALS		
ID	(m)	Sample	Type S-soil	Type G-glass	Samples	By	Date	Time	Loch	8/4/20	8/4/20		
			W water	P-plastic							5/ ./		
401	0.05		S	Gil		585	1/4/20	3	Estes	1			
401	0.25-0.4		1	Bulk		1							
		D1/5PS		GIP						~			
402	0.01												
900	0.17												
	0.14												
11.52	0.01												
403	0.2												
	0.4												
434	0.2									\checkmark			
	0.2	D2/585											
405	0.3	DADI-		P									
	0.4-			450									
				P									
	1.5			P									
				6									
	2.8							J		\checkmark			
106A	0.25			6.p		1. }		5					
	0.35			GP		· ·	U	3					

Project No: 91601.03 Client Project Name: Supplementary Investigation										
Client: Pacific Gast Christian School Ltal	Location: Lot 62 Maillon St, Muswell	propr								
Project Manager: CB		DP Lab Received	By: 3PS	Date: 8/4/20						
Do samples contain 'potential' HBM? Yes	D No 🗹 (If YES, then handle, transport and	d store in accordance wit	h FPM HAZID)							

			F	ield		DP Lab	F	or Despate	Notes				
Sample ID	Depth (m)	Duplicate Sample	Sample Type	Container Type	ASS Samples		Samplin	g	Storage Locn*	Envirolab	ALS		
			S-soil W water	G-glass P-plastic		By	Date	Time		8/4/20	8/4/20		
106 A	0.5		S	G.P		JPS	7/4/20	3	Esley	\checkmark			
406 .	0.35	031518/ 71 /519	5			1	1	1		\checkmark	1		
407	40:0.2									\checkmark		1	
408	0.21			P									
409	0.08	05/5/5/13/50	s	6,8									
	0.2	04/585											
410	0.2			V									
	0.3- 0.75			U50									
	1-0			P									
	2-5			P									
411	001			C.P						\checkmark			
	0.2			Ň									
412	0.01												
	0.15									1			1
413	0.08												
	0.15									\checkmark			
ŧ								P					
			J	J		J	Ù	5	L				

Project No: 9	1601.03			Client Project Name: Supplementing Investigation Location: Lot 62 Maillan St, Muswell 680012									
Client: Pacific	Gast Chr	istian School	Ctol	Location:	lot 62	Maitle	sf, n	nuswellby	sol2				
Project Mana	l ger: ∠∮	3					,	1	DP Lab Re	eceived	By:	3PS	Date: 8/4/20
Do samples o	contain 'p	otential' HI	BM? Yes		(If YES, th	en hand	dle, trans	port and	store in acco	ordance w	ith FPM H	AZID)	
······································				ield					DP Lab	F	or Despat	ch to	Notes
Sample	Depth	Duplicate	Sample	Container	ASS		Samplin	a	Storage Locn*				
ID	(m)	Sample	Туре	Туре	Samples		_						
			S-soil W water	G-glass P-plastic		By	Date	Time					
501	0.3-6		5	P. Bulk		JPS	7/4/20	8	Eg Shelf				
	1-1.3		1	P, Bulk							-		
frances and the second s	2.0			P									am anu
	2.5			P									
	2.9			P									*****
502	0.5- 0.95			L150		·							
	0.5			P		·····		A					
	1.0						ľ						
	2.0												
	2.5			V								-	
503	0.5- 0.95			Ugo									
	0.5			P									
	17.45			U50									
	1.0			P									· · · · · · · · · · · · · · · · · · ·
	2.0												
	2.5		J	<u> </u>				5	J				

						-								
Project No: 9	91601.03			Client Proje	ect Name:	Sup	plementa	ry Inve	stigation					
Client: Pa	cific Coalt	- Christian.	School Ltd	Location:	Lot 62	Maitlar	nd St. 1	Muswellb	Cook					
Project Mana		B							DP Lab Re	eceived	By:	JRK	Date: 8/4/20	
Do samples contain 'potential' HBM? Yes No (If YES, then handle, transport and store in accordance with FPM HAZID)														
	Field DP Lab For Despatch to Notes													
Sample	Depth	Duplicate	Sample	Container	ASS		Samplin	g	Storage	Envirolab	ALS			
ID	(m)	Sample	Type S-soil W water	Type G-glass P-plastic	Samples	Ву	Date	Time	Locn*	8/4/20	\$/4/20			
B1-1			S	G.P		JRK	7/4/20	8:30	Fridge	~		1		
B1-2		DH/JEK T3/JEK)							1				
B1 - 3														
00 11														

Sample ID	Depth (m)	Sample	Type	Type	Samples		Oampin	9	Locn*	LINNOIO	15	
U	(11)	Jampie	S-soil	G-glass	Campier	By	Date	Time	1	8/4/20	8/4/20	
			W water	P-plastic		TOIC	7/4/20	0.7	C.L.			
B1-1		1000	S	G.P		JRK	114/20	8:30	Fridge	V	~	
B1-2		PH/JRK T3/JRK								1	~	
B1-3										V		
B1-4										1		
B2-1										1		
B2-2										1		
B2-3										1		
B2-4												
										1		
B3-1										1		
B3-2										1		
B3-3										\checkmark		
B3-4										1		
B4-1		DI/SRK TI/JRK								1		
B4-2		11/ 54.								V	- 1	
										1		
B4-3										V		
B4-4									1	1		
B5-1		D2/JRK						V				
B5-2			V	V		V	V	17:00	V			

				Client Proje	oct Name:	Spolen	untary	Investigan	tion				
Project No: 91	601.03	1- C-1 I	12	Location:	LL /1	Maille	SF N	a cell has	6				
Client: Pacific I	Loalt Christ	han School	LTO	Location:	LOT DL.	1 Califian	a 21, 17		DP Lab Re	eceived	By: J	RK	Date: 8/4/20
Project Manag	er: CB						le trance						
Project Manag	ontain 'po	otential' HB	M? Yes		(If YES, the	en hand	ie, transp	on and si					Notoo
			F	ield					DP Lab		or Despatch	to	Notes
Sample	Depth	Duplicate	Sample	Container	ASS		Sampling		Storage Locn*	Envirolab	ALS		
ID	(m)	Sample	Type S-soil W water	Type G-glass P-plastic	Samples	Ву	Date	Time	LOCH	8/4/20	8/4/20		
B5-3			S	G, P		JRK	7/4/20	8:30	Fridge	\checkmark			
B5-4			1	1				[1	V			
B6-1										\checkmark			
B6-2										1			
										1			
B6-3										1			
B6-4										1			
B7-1										\checkmark			
B7-2										\checkmark			
B7-3		DZ/SRK								\checkmark	\checkmark		
B7-4		03/58K T2/58K								1			
<u>B8-1</u>										1			
B8-2							-			· ·			
B8-3										1			
88-4													
B9-1										1			
89-2										V			
B9-3										V			
B9-4			V	\checkmark				17:00	V	1			

*Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

Trial Rev3/Feb 2016

				Client Proje	ot Namo:	Sau	lementary	Invest	igation				
Project No: 91	601.03					Mi	land St	, MUSWEI					
Client: Pacific		istian Schoo	1 Ltd	Location:	Lot 62	* Mart	Jano Ji	, TIVSWCI	DP Lab R	eceived	By: 🍏	DIC	Date: 8/4/20
Project Manag	er: Ce	5											
Do samples co	ontain 'po	otential' HE	BM? Yes L	No	If YES, the	en hand	dle, transp	ort and si	ore in acc	oruance wi			
			Fi	eld					DP Lab	Fo	or Despatcl	n to	Notes
Sample	Depth	Duplicate	Sample	Container	ASS		Sampling	g	Storage	Envirolab	ALS		
ID	(m)	Sample	Туре	Туре	Samples	Dv	Date	Time	Locn*	8/4/20	8/4/20		
			S-soil W water	G-glass P-plastic		By	Date	Time		8/4120	0/9/20		
BID-1			S	G.P		JRK	7/4/20	8:30	Fridge	\checkmark			
			1	1		{	1	1	0	\checkmark			
B10-2 B10-3										\checkmark			
			V							\checkmark			
B10-4				Q						1			
F1/JRK			Fragment	P									
F2/JRK										V V			
F3/JRK													
FH/JRK													
F5/SRK										V			
F6/JRK						-				1			
307/1			S	G.P				V		 ✓ 			
307/2			S	G.P		V	V	17:00	V	V			
· · · · · · · · · · · · · · · · · · ·													

Douglas Partners Geotechnics I Environment I Groundwater

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 91601.03	Suburb/Town: Muswellbrook	To: Envirolab Services Pty Ltd									
DP Order No: 150083	DP Contact Person: Paulo Sebastian / Chris Bozinovski	12 Ashley Street, CHATSWOOD NSW 2067									
Prior Storage: Esky X Fridge She		Ph: (02) 9910 6200	Attn: Jacinta Hurst								
Do samples contain 'potential' HBM? Yes 🖆 No 🗌 (If YES, then handle, transport and store in accordance with FPM HAZID)											

1

[Samp	e		Analytes							Notes	
	DP	Date	Туре	Lab	TRH,	TRH, BTEX, PAH,		Lead	Asbestos in				
	ID	Sampled	S-soil W-water	ID	PAH,	Phenols, OCP, OPP,		,	soil (500mL)				
		;			Phenol	PCB, Metals (12)		<u> </u>		Material			
Ī	B1-1	7/4/20	S										
2	B1-2						\checkmark	\checkmark					
34	B1-3			-			\checkmark	\checkmark	\checkmark	. •			
	B1-4							 ✓ 			·,		Envirciab Services
5	B2-1							\checkmark			ENVIE	OLAB	12 Ashley St
6	B2-2						1	\checkmark			l Y		Ph: (02) 9910 6200
7	B2-3			·				\[\] \[\[\] \[\[\] \[\] \[\] \[\[\] \[\[\] \[\[\] \[\[\[\] \[\[\[\[·	100	Noiz	alution
89	-B2-4							\checkmark		•	Date	e Received Receive	9/4/20
9	B3-1										Rec	eived By:	70 .
10	B3-2	♥	V								Ceb	ino: Cell	epacie
	PQL (S) mg/kg										Se	noisy lots	Marchan Nonex
	PQL (W) mg/L	ANZECC PQLs re	q'd for all water	analytes 🛛			_						-
	PQL = practical quan	titation limit. If no	ne given, defaul	t to Laboratory Met	hod Detection I	Limit	SAMPLES RECEIVED BY LAB			Send results to:			
	*Metals to Analyse (Please circle) As, Col. Cr. Cu. Pla. Za, Ha, Ni, Min. Fa, Al. Sc, Sn, Sb, Mg, Co, B,						Please sign and date to acknowledge receipt of samples				Partners Pty Ltd		
-							and return b	Email:					
-	Total number of samples in container:							paulo.sebas	paulo.sebastian@douglaspartners.com.au				
	Date relinquished:						Signature: John John John John John John John John					glaspar	<u>tners.com.au</u>
	Results required by □ Same day □ 24 hours □ 48 hours □ 72 hours X Standard											douglas	partners.com.au
1	🗆 Same day 🛛	24 hours 🛛 4	8 hours	72 hours X S	standard		Lab Ref:						

FPM - ENVID/Form COC 03

.

میں برج کے

.

2

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 916	01.03	Suburb/Town: Muswellbrook	To: Envirolab Services Pty Ltd								
DP Order No: /	500 83	DP Contact Person: Paulo Sebastian / Chris Bozinovski	12 Ashley Street, CHATSWOOD NSW 2067								
Prior Storage:	Esky X Fridge 🗆 She		Ph: (02) 9910 6200	Attn: Jacinta Hurst							
Do samples contain 'potential' HBM? Yes 🛛 No 🗌 (If YES, then handle, transport and store in accordance with FPM HAZID)											

	Sample						Analytes							Notes		
	DP ID		Date Sampl		Type S-soil W-water	Lab ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)	OCP, OPP	Lead	Asbestos in soil (500mL)	Asbestos I.D Material				
ll.	B3-3		7/4/2	20	S				\checkmark							
12	B3-4		1		ſ				\checkmark							
13	BH-1								\checkmark							
14	BH-2								\checkmark							
15	BH-3															
16	BH-H								\checkmark							
17	B5-1								1	 ✓ 						
iq	B5-2								✓	\checkmark		-		-	· · ·	
19	B5-3									 ✓ 	 ✓ 					
20	B5-4		\vee	, 	V				1							
	PQL (S) mg/kg	PQL (S) mg/kg														
	PQL (W) mg/L	ANZ	ECC PQL	_s req'o	d for all water	analytes 🛛										
	PQL = practical qua	PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit						Limit	SAMPLES RECEIVED BY LAB Please sign and date to				Send results to:			
	*Metals to Analyse (Please circle) As. Od. Or. Ou. P. Zn. Ha. N. Ma. P. Al. Se, Sn, Sb, Mg,						Se, Sn, Sb, Mg, Co, B,	acknowledg		Douglas Partners Pty Ltd						
	Total number of samples in container:								and return by email			Email: paulo.sebastian@douglaspartners.com.au Josh.kramer@douglaspartners.com.au				
	Date relinquished:						Signature:			chris.bozinovski@douglaspartners.com.au						
	Results required by □ Same day □ 24 hours □ 48 hours □ 72 hours X Standard															
	-															

•

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 91601.03	Suburb/Town: Muswellbrook	To: Envirolab Services Pty Ltd					
DP Order No: 150083	DP Contact Person: Paulo Sebastian / Chris Bozinovski	12 Ashley Street, CHATSWOOD NSW 2067					
Prior Storage: Esky X Fridge D She		Ph: (02) 9910 6200	Attn: Jacinta Hurst				
Do samples contain 'potential' HBM?	Yes 🗹 No 🗌 (If YES, then handle, transport and	store in accordance with I	FPM HAZID)				

ſ			Samp	le						Analytes					Notes
	DP ID		Date mpled	Ty S-s W-w	lioil	Lab ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)	OCP, OPP	Lead	Asbestos in soil (500mL)	Asbestos I.D Material			
21	B6-1	7/	4/20	> 5	\$						\checkmark				
22	B6-2								\checkmark	1	V				
23	B6-3					-				\checkmark	\checkmark	•			
24	B6-4								1	1	\checkmark				
25	B7-1								 ✓ 						
26	B7-2								1						
27	B7-3			_											
27 28 29	B7-4								1						
29	B8-1			_					1	 ✓ 	\checkmark				
30	B8-2		V	v V											
	PQL (S) mg/kg														
	PQL (W) mg/L	ANZECC	PQLs r	eq'd for al	l water ar	nalytes 🛛									
ar.	PQL = practical qua	intitation lin	nit. If no	one given,	default to	o Laboratory Me	thod Detection	Limit	SAMPLES			Send result			
	*Metals to Analyse (Please circle) As. Od. Cr. Od. Pb. Zh. Ha				Pil, Zr. Ho, N	l, Mini, Fei, All	Se, Sn, Sb, Mg, Co, B,	Please sign acknowledg			Douglas Pa	artners	Pty Ltd		
						25			and return b	•		Email: paulo seba	stian@	dounlas	spartners.com.au
	Total number of samples in container: 75 Date relinquished: 314/26				5			Signature: . Date:	709	4					
									Date	9/4/20)	<u>Josh.kramer@douglaspartners.com.au</u> chris.bozinovski@douglaspartners.com.au			
	Results required by □ Same day □ 24 hours □ 48 hours □ 72 hours				2 hours X S	Standard		Lab Ref:	2406	45	01110.002111	01010	Jougia	<u>isparatoro.oomaa</u>	
	-														
									L						

,

<u>____</u>

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 91601.03	Suburb/Town: Muswellbrook	To: Envirolab Services Pty Ltd							
DP Order No: /50083	DP Contact Person: Paulo Sebastian / Chris Bozinovski	12 Ashley Street, CHATSWOOD NSW 2067							
Prior Storage: Esky X Fridge D She		Ph: (02) 9910 6200	Attn: Jacinta Hurst						
Do samples contain 'potential' HBM? Yes 🗹 No 🗌 (If YES, then handle, transport and store in accordance with FPM HAZID)									

			Sample	е					nalytes					Notes
	DP ID		Date Impled	Type S-soil W-water	Lab ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)	OCP, OPP	Lead	Asbestos in soil (500mL)				
31	B8-3	7/	4/20	S					\checkmark	\checkmark	_			
32	B8-4		[\checkmark	\checkmark				
33	B9-1	_								 ✓ 				
34	B9-2					-		<i>✓</i>		\checkmark				
35	B9-3						· · · · · · · · · · · · · · · · · · ·	 ✓ 		 ✓ 				
36	B9-4													
37	B10-1		_					V			· ·			
38	B10-2		_											
39	B10-3								<u> </u>					
40	B10-4		V	V	·			 ✓ 						
	PQL (S) mg/kg	·		<u></u>										-
	PQL (W) mg/L	ANZECO	PQLs rec	'd for all water	analytes									
	PQL = practical qua *Metals to Analys						Limit Sg, Sn, Sb, Mg, Co, B,	SAMPLES I Please sign acknowledg and return b	and date t le receipt d	to	Send result Douglas Pa Email:	artners		
	Total number of samples in container:7.5 Date relinquished:						Signature: Date: Lab Ref:	1 0 10645	paulo.sebastian@douglaspartners.com.a Josh.kramer@douglaspartners.com.au chris.bozinovski@douglaspartners.com.a			rtners.com.au		
									~ ()	0 0645	chris.bozino	ovski@	dougl	a

 \frown

Douglas Partners Geotechnics / Environment / Groundwater

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 91601.03	Suburb/Town: Muswellbrook	To: Envirolab Services Pty Ltd					
DP Order No: 1500 83	DP Contact Person: Paulo Sebastian / Chris Bozinovski	12 Ashley Street, CHATSWOOD NSW 2067					
Prior Storage: Esky X Fridge D Sh		Ph: (02) 9910 6200	Attn: Jacinta Hurst				
Do samples contain 'potential' HBM?	Yes 🗹 No 🗋 (If YES, then handle, transport and	I store in accordance with	FPM HAZID)				

[/ in,		ampl	e	·			A	nalytes					Notes
		DP ID		ate	Typ S-se W-wa	bil ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)	OCP, OPP	Lead	Asbestos in soil (500mL)				
	F1./	JRK	7/4	120	Fragm							\checkmark			
12		JRK		1.	1.9.1	··· ···						\checkmark		_	
-B		JRK					+	·				\checkmark			
44		JAK					-					\checkmark			
5		JAK						· · · · ·				\checkmark			
46		JRK				/						\checkmark			
17	h~	SRK			5				\checkmark						
48		JRK								1					
+9		JRK						·····	V						·
50		JRK	,	V	\ \	V			V	\checkmark					
ľ	PQL (S)					·······									
ŀ	PQL (W)	mg/L	ANZECC P	QLs req	'd for all	water analytes									
ľ	POI = pra			lf non	e aiven.	iefault to Laboratory M	ethod Detection	Limit	SAMPLES I			Send result	s to:		
F						· · · · · · · · · · · · · · · · · · ·		Se, Sn, Sb, Mg, Co, B,	Please sign acknowledg			Douglas Pa	artners I	Pty Ltd	
									and return b		n samples	Email:			
	Total number of samples in container:					er:	•			30	11				partners.com.au
	Date relinquished:								Signature: . Date:	2/4/20	<u>v v</u>				tners.com.au
	Results required by □ Same day □ 24 hours □ 48 hours □ 72 hours					- 🗆 70 havra V	Ctandord		Date:	0 V 20 0 UN	20	<u>chris.bozinc</u>	ovski@	douglas	partners.com.au
	□ Same day □ 24 hours □ 48 hours □ 72 hours →					S / 2 nours X	อเลทบลเป		Lab Ref:	$ $	<u>v</u>				
1															

Douglas Partners Geotechnics I Environment I Groundweter

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 91601.03	Suburb/Town: Muswellbrook	To: Envirolab Service	s Pty Ltd								
DP Order No: 150083 DP Contact Person: Paulo Sebastian / Chris Bozinovski 12 Ashley Street, CHATSWOOD NS											
Prior Storage: Esky X Fridge		Ph: (02) 9910 6200	Attn: Jacinta Hurst								
Do samples contain 'potential' HBM? Yes 🗹 No 🗌 (If YES, then handle, transport and store in accordance with FPM HAZID)											

	Sample					Analytes						Notes
DP ID	Date Sampled	Type S-soil W-water	Lab ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)		Lead	Asbestos in soil (500mL)	Asbestos I.D Material	Gal Tar I-D		
401 10.05	7/4/20	S		1						\checkmark		
. 401/0.15	1	1										
402 10.4												
40410.2												
405/0.35												
106A/0.25									_	V		· · · · · · · · · · · · · · · · · · ·
106A 10.35			=							ļ		
106A/0.5												
407/0.28				<i>`</i>								
411/0.01		\bigvee		~						~		
PQL (S) mg/kg												
PQL (W) mg/L AM	NZECC PQLs rec	'd for all water	analytes									
PQL = practical quantita	ation limit. If non	e given, defaul	t to Laboratory Me	thod Detection	Limit							
*Metals to Analyse (F	Please circle)	46. Oct. Or. O	1, Pb, Zr, Ho, N	i, Mn. Pa. Al.	Se, Sn, Sb, Mg, Co, B,				· ·	artners	Pty Ltd	
			25			and return t	oy email			ustian@	douglas	spartners.com.au
Total number of	samples in o	. ::container	<u> </u>			Signature	ZA	*				
						Date:	9/4/2	2	chris.bozinovski@douglaspartners.com.au			
Results required by □ Same day □ 24 hours □ 48 hours □ 72 hours				 Standard		Lab Ref: 240645						
_							_					·
	ID 401 / 0.05 401 / 0.15 402 / 0.15 402 / 0.2 406 / 0.25 106A / 0.25 106A / 0.35 106A / 0.35 106A / 0.55 407 / 0.28 411 / 0.01 PQL (S) mg/kg PQL (W) mg/L Ar PQL = practical quantitation of the second sec	DP IDDate Sampled $i401/0.05$ $71/4/20$ $401/0.15$ $71/4/20$ $402/0.15$ $71/4/20$ $404/0.15$ $71/4/20$ $405/0.25$ $706A/0.25$ $106A/0.25$ $106A/0.55$ $106A/0.5$	IDSampledS-soil W-water $401/0.05$ $71/4/20$ S $401/0.15$ 11 $402/0.4$ 11 $404/0.2$ 11 $406/0.25$ 11 $406/0.25$ 11 $106A/0.25$ 11 $106A/0.5$ 11 <td>DP IDDate SampledType S-soil W-waterLab ID$401/0.05$$71/4/20S401/0.15$1$402/0.15$1$404/0.2$1$406/0.25$1$406/0.25$1$106A/0.25$1$106A/0.55$1$407/0.28$1$407/0.28$1$401/0.01$1$401/0.28$1$401/0.28$1$401/0.55$1$106A/0.55$1$107/0.28$1$107/0.28$1$108/0.55$1$108/0.55$1$108/0.55$1$108/0.55$1$108/0.55$1$108/0.55$1$108/0.55$1$108/0.55$1$108/0.55$<</td> <td>DP IDDate SampledType S-soil W-waterLab IDTRH, PAH, PAH, Phenol$401/0.05$$7/4/20$S/$401/0.15$//$401/0.15$/$402/0.2$/$404/0.2$/$406/0.25$/$106A/0.25$/$106A/0.25$/$106A/0.55$/$106A/0.55$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$/$411/0.01$$411/0.01$$411/0.01$$411/0.01$$411/0.01$$411/0.001$<</td> <td>DP ID Date Sampled Type S-soil W-water Lab ID TRH, PAH, Phenol TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12) 401/0.05 7/4/20 S / / ////////////////////////////////////</br></td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>DP IDDate SampledType S-soilLab IDTRH, PAH, PhenolTRH, Phenols, OCP, OPP, PCB, Metals (12)OCP, OPP LeadLeadAsbestos in soil (500mL)$\psi_01 / 0.05$$7/\psi/\inftyS\checkmark$$\checkmark$<</td> <td>DP ID Date Sampled Type B-soil W-water Lab ID TRH, PAH, PAH, Phenols, OCP, OPP, PCB, Metals (12) CCP, OPP, PCB, Metals (12) Lead Asbestos in soil (500mL) Asbestos in soil (500mL) 401/0.05 7/4/02 S V S ID Material 401/0.15 ID V S V S ID Material 401/0.15 ID V S V S ID ID Material 401/0.15 ID V ID V ID ID</td> <td>DP ID Date Sampled Type S-soil W-water Lab ID TRH, PAH, Phenols, OCP, OPP, Phenols, OCP, OPP, PCB, Metals (12) Lead Asbestos in soil (500mL) Asbestos in ID ID <thid< th=""> <thid< th=""> ID</thid<></thid<></td> <td>DP ID Date Sampled Type Sevil Lab ID TRH, Phenols, OCP, OPP, PAH, Phenols, OCP, OPP, PCB, Metals (12) Lead Asbestos in soil (500mL) Asbestos in Material Asbestos in far 401 / 0.05 7/4/20 S //</td>	DP IDDate SampledType S-soil W-waterLab ID $401/0.05$ $71/4/20$ S $401/0.15$ 1 $402/0.15$ 1 $404/0.2$ 1 $406/0.25$ 1 $406/0.25$ 1 $106A/0.25$ 1 $106A/0.55$ 1 $407/0.28$ 1 $407/0.28$ 1 $401/0.01$ 1 $401/0.28$ 1 $401/0.28$ 1 $401/0.55$ 1 $106A/0.55$ 1 $107/0.28$ 1 $107/0.28$ 1 $108/0.55$ 1 $108/0.55$ 1 $108/0.55$ 1 $108/0.55$ 1 $108/0.55$ 1 $108/0.55$ 1 $108/0.55$ 1 $108/0.55$ 1 $108/0.55$ <	DP IDDate SampledType S-soil W-waterLab IDTRH, PAH, PAH, Phenol $401/0.05$ $7/4/20$ S/ $401/0.15$ // $401/0.15$ / $402/0.2$ / $404/0.2$ / $406/0.25$ / $106A/0.25$ / $106A/0.25$ / $106A/0.55$ / $106A/0.55$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ / $411/0.01$ $411/0.01$ $411/0.01$ $411/0.01$ $411/0.01$ $411/0.001$ <	DP ID Date Sampled Type 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP IDDate SampledType S-soilLab IDTRH, PAH, PhenolTRH, Phenols, OCP, OPP, PCB, Metals (12)OCP, OPP LeadLeadAsbestos in soil (500mL) $\psi_01 / 0.05$ $7/\psi/\infty$ S \checkmark <	DP ID Date Sampled Type B-soil W-water Lab ID TRH, PAH, PAH, Phenols, OCP, OPP, PCB, Metals (12) CCP, OPP, PCB, Metals (12) Lead Asbestos in soil (500mL) Asbestos in soil (500mL) 401/0.05 7/4/02 S V S ID Material 401/0.15 ID V S V S ID Material 401/0.15 ID V S V S ID ID Material 401/0.15 ID V ID V ID ID	DP ID Date Sampled Type S-soil W-water Lab ID TRH, PAH, Phenols, OCP, OPP, Phenols, OCP, OPP, PCB, Metals (12) Lead Asbestos in soil (500mL) Asbestos in ID ID ID <thid< th=""> <thid< th=""> ID</thid<></thid<>	DP ID Date Sampled Type Sevil Lab ID TRH, Phenols, OCP, OPP, PAH, Phenols, OCP, OPP, PCB, Metals (12) Lead Asbestos in soil (500mL) Asbestos in Material Asbestos in far 401 / 0.05 7/4/20 S //

 \sim

Douglas Partners Geotechnics / Environment / Groundwater

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 91601.03	Suburb/Town: Muswellbrook	To: Envirolab Services Pty Ltd									
DP Order No: 1500 83	DP Contact Person: Paulo Sebastian / Chris Bozinovski	12 Ashley Street, CHATSWOOD NSW 2067									
Prior Storage: Esky X Fridge D She		Ph: (02) 9910 6200	Attn: Jacinta Hurst								
Do samples contain 'potential' HBM? Yes 🖉 No 🗌 (If YES, then handle, transport and store in accordance with FPM HAZID)											

[Sample	ə					nalytes		-			Notes
	DP ID	Date Sampled	Type S-soil W-water	Lab ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)	OCP, OPP	Lead	Asbestos in soil (500mL)	Asbestos I.D Material	(201 Tar 1.D		
61	412/0.15	7/4/20	S										
62	413/0.15	. (1.		~								
63 64	DIFJPS				i								
64	D3/JB												
65	301/1									_			Contro 6 + adelition
66	301/2	r											
67	301A/2												
68 69	303/1								V				
69	303/2	_											
70	304/1	V	V										J
	PQL (S) mg/kg												
	PQL (W) mg/L	ANZECC PQLs req	'd for all water	analytes 🛛									
	PQL = practical qua	antitation limit. If non	e given, defaul	t to Laboratory Me	ethod Detection	Limit	SAMPLES			Send resul			
	*Metals to Analys	se (Please circle)	(g. Cd. Ol C	n, Pd. Zn. Hn. N	I, Mh. Fe. Al.	Se, Sn, Sb, Mg, Co, B,	Please sign acknowledg			Douglas Pa	artners	Pty Ltd	
					2		and return t	•		Email:	stian@) dougla	spartners.com.au
	Total number	of samples in c	container: . M4/2-0				Signature	D	ff .	Josh krame		_	rtners.com.au
		shed:8					Date:	9/4/2	D	chris bozin			spartners.com.au
	Besults requi	irea by 🗆 24 hours 🗆 4	8 hours □	72 hours X	Standard		Lab Ref:	2401	47 0 545		0,0110		

1

Ξ.

•

. .

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 916	601.03	Suburb/Town: Muswellbrook	_ To: Envirolab Services Pty Ltd								
DP Order No: 150-83 DP Contact Person: Paulo Sebastian / Chris Bozinovski 12 Ashley Street, CHATSWOOD NSW 2067											
Prior Storage:	Esky X Fridge 🗆 She		Ph: (02) 9910 6200	Attn: Jacinta Hurst							
Do samples co	Do samples contain 'potential' HBM? Yes 🖉 No 🗌 (If YES, then handle, transport and store in accordance with FPM HAZID)										

e.

÷.,

[Sample	9				A	nalytes					Notes
	DP ID	Date Sampled	Type S-soil W-water	Lab ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)	OCP, OPP	Lead	Asbestos in soil (500mL)	Asbestos I.D Material			
71	306/1	114/20	S						1				Combo 6 + udditional
72	306/2					V			1				1
73	307/1								\checkmark				
74	307/2					V							
B	D7/J85	y	V										\bigvee
									_				
	PQL (S) mg/kg												
	PQL (W) mg/L	ANZECC PQLs req	'd for all water	analytes 🛛]		
	PQL = practical qu	antitation limit. If none	e given, defaul	t to Laboratory Me	thod Detection	Limit	SAMPLES			Send result	s to:		
	*Metals to Analy	se (Please circle) 🛛	\s. 04, 07, 0	u, Pd. Zh. Ho. N	1, Mn. Fe, Al.	Se, Sn, Sb, Mg, Co, B,	Please sign acknowledg			Douglas Pa	artners	Pty Ltd	
							and return h	by email		Email:	otion @	douglo	
	Total number	of samples in of shed:	ontainer: .	75	·		Cianatura	THE) 645	Jooh krome		•	spartners.com.au
							Dete:	9/4/20)	Josh.kramer@douglaspartners.com.au			
	Results requ □ Same day	ired by □ 24 hours □ 48	B hours ⊓	72 hours X S	Standard		Date:	740	645	<u>cnris.dozin</u>	DVSKI@	aouglas	spartners.com.au
	uu,					2023 2023		·····					
l		· <u> </u>											

Douglas Partners

240645-A

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 91601.03	Suburb/Town: Muswellbrook	To: Envirolab Services Pty Ltd					
DP Order No: 150118	DP Contact Person: Paulo Sebastian	12 Ashley Street, CHATSWOOD NSW 2067					
Prior Storage: Esky X Fridge D Sho		Ph: (02) 9910 6200	Attn: Jacinta Hurst				
	Yes 🗌 No 🗋 (If YES, then handle, transport and	store in accordance with FF	PM HAZID)				

	Sample	9				Analy	tes					Notes
DP ID	Date Sampled	Type S-soil W-water	Lab ID	TCLP Lead	TCLP Benzo(a)pyrene	ASLP Benzo(a)pyrene						
B8-2	7/4/20	S	240645-30	Х								
413/0.15	7/4/20	S	240645-62		Х	Х						
							-					
PQL (S) mg/kg		I										
PQL (W) mg/L	ANZECC PQLs rec	i'd for all water	ranalytes 🛛									
PQL = practical qu	antitation limit. If non	e given, defau	ult to Laboratory Met	hod Detection	Limit	SAMPLES RECEIV			Send result			
*Metals to Analy	se (Please circle) /	As, Cd, Cr, C	Cu, Pb, Zn, Hg, Ni	, Mn, Fe, Al,	Se, Sn, Sb, Mg, Co, B,	Please sign and date to acknowledge receipt of samples and return by email Email: <u>paulo.sebastian@dou</u>						aspartners.com.au
Total number of samples in container:At Envirolab												
Date relinquished:8/4/20 Results required by						Signature:						
🛛 🛛 Same day	Results required by □ Same day □ 24 hours □ 48 hours □ 72 hours X Standard				Date:							
						Lab Ref:						

-

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Paulo Sebastian

Sample Login Details	
Your reference	91601.03, Muswellbrook
Envirolab Reference	240645
Date Sample Received	09/04/2020
Date Instructions Received	09/04/2020
Date Results Expected to be Reported	20/04/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	69 Soil, 6 Material
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.9
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst							
Phone: 02 9910 6200	Phone: 02 9910 6200							
Fax: 02 9910 6201	Fax: 02 9910 6201							
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au							

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	 Organochlorine Pesticides in soil 	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils NEPM - ASB- 001	Asbestos ID - materials	Coal Tar
B1-1					\checkmark		\checkmark		\checkmark		
B1-2				\checkmark	\checkmark		\checkmark		\checkmark		
B1-3				\checkmark	\checkmark		✓		\checkmark		
B1-4				\checkmark	\checkmark		✓		✓		
B2-1				✓	✓		✓				
B2-2				✓	✓		✓				
B2-3				✓	\checkmark		✓				
B2-4				✓	✓		✓				
B3-1				\checkmark	\checkmark						
B3-2				\checkmark	\checkmark						
B3-3				\checkmark	\checkmark						
B3-4				\checkmark	\checkmark						
B4-1				\checkmark	\checkmark						
B4-2				\checkmark	\checkmark						
B4-3				\checkmark	\checkmark						
B4-4				\checkmark	\checkmark						
B5-1				\checkmark	\checkmark		\checkmark		\checkmark		
B5-2				\checkmark	\checkmark		✓		✓		
B5-3				\checkmark	\checkmark		\checkmark		\checkmark		
B5-4				\checkmark	\checkmark		\checkmark		\checkmark		
B6-1				✓	\checkmark		✓		\checkmark		
B6-2				✓	\checkmark		✓		\checkmark		
B6-3				✓	\checkmark		√		\checkmark		
B6-4				✓	\checkmark		✓		\checkmark		
B7-1				✓	\checkmark						
B7-2				✓	\checkmark						
B7-3				✓	\checkmark						
B7-4				✓	\checkmark						
B8-1				✓	✓		✓		✓		
B8-2				✓	✓		✓		✓		
B8-3				✓	\checkmark		✓		✓		
B8-4				✓	✓		✓		✓		

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils NEPM - ASB- 001	Asbestos ID - materials	Coal Tar
B9-1				\checkmark	\checkmark				\checkmark		
B9-2				\checkmark	\checkmark				\checkmark		
B9-3				\checkmark	\checkmark				\checkmark		
B9-4				\checkmark	✓				\checkmark		
B10-1				✓	✓						
B10-2				✓	✓						
B10-3				✓	✓						
B10-4				✓	✓						
F1/JRK										\checkmark	
F2/JRK										\checkmark	
F3/JRK										\checkmark	
F4/JRK										\checkmark	
F5/JRK										\checkmark	
F6/JRK										\checkmark	
D1/JRK				\checkmark	\checkmark						
D2/JRK				\checkmark	\checkmark		✓				
D3/JRK				\checkmark	\checkmark						
D4/JRK				\checkmark	\checkmark		\checkmark				
401/0.05	✓	\checkmark	\checkmark					\checkmark			\checkmark
401/0.15	✓	\checkmark	\checkmark					\checkmark			
402/0.4	✓	\checkmark	\checkmark					✓			
404/0.2	✓	\checkmark	\checkmark					✓			
406/0.35	\checkmark	\checkmark	\checkmark					✓			
106A/0.25	✓	✓	\checkmark					✓			\checkmark
106A/0.35	✓	✓	\checkmark					✓			
106A/0.5	\checkmark	\checkmark	\checkmark					✓			
407/0.28	✓	✓	\checkmark					✓			\checkmark
411/0.01	✓	✓	\checkmark					✓			✓
412/0.15	✓	\checkmark	\checkmark					✓			
413/0.15	✓	✓	✓					✓			
D1/JPS	✓	✓	\checkmark					✓			
D3/JPS	✓	✓	✓					✓			

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils NEPM - ASB- 001	Asbestos ID - materials	Coal Tar
301/1	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
301/2	1	✓	✓	\checkmark	✓	✓	✓	\checkmark	\checkmark		
301A/2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
303/1	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark		
303/2	1	\checkmark	✓	\checkmark	\checkmark	✓	✓	✓	\checkmark		
304/1	✓	✓	✓	\checkmark	✓	✓	✓	✓	✓		
306/1	1	✓	✓	\checkmark	✓	✓	✓	✓	✓		
306/2	1	✓	✓	✓	✓	✓	✓	√	✓		
307/1	✓	✓	✓	✓	✓	✓	✓	√	✓		
307/2	1	✓	✓	✓	✓	✓	✓	✓	✓		
D7/JPS	\checkmark	\checkmark	\checkmark	✓	✓	✓	\checkmark	✓			

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Douglas Partners Geotechnics / Environment / Groundwater

20/4120

CHAIN OF CUSTODY DESPATCH SHEET (2)

Project No: 91601.03	Suburb/Town: Muswellbrook	To: ALS Environmental							
DP Order No: 150 084	DP Contact Person: Paulo Sebastian / Chris Bozinovski 277-289 Woodpark Rd, Smithfield NSW 2164								
Prior Storage: Esky X Fridge 🗆 She		Ph: (02) 8784 8555	Attn: Barbara Hannah						
Do samples contain 'potential' HBM? Yes I No I (If YES, then handle, transport and store in accordance with FPM HAZID)									

[Sample)				****~~ A	Notes				
		DP ID	Date Sampled	Type S-soil W-water	Lab ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)	OCP, OPP	Lead	Asbestos in soil (500mL)	Asbestos I.D Material		
1	T1/3	585	7/4/20	S									
٢	12/	JPS						1			·		
ל '	12/	JRK									F	Invironmenta	al Division
1	T3/	JRK							\checkmark			ydney Work Order F	
		-		-								ES201	
							· · · ·						
												élephone : + 61-2-87	784 (1555
ĺ	PQL (S)	mg/kg	•										
	PQL (W)	mg/L AN	ZECC PQLs req	'd for all water	analytes 🛛								
ľ	PQL = pra	actical quantita	tion limit. If none	e given, defaul	t to Laboratory Me	thod Detection	Limit	SAMPLES			Send result	ts to:	
ľ	*Metals t	o Analyse (F	Please circle) A	s, Cd, Cr, C	u, Pb, Zn, Hg, N	i, Mn, Fe, Al,	Se, Sn, Sb, Mg, Co, B,	Please sign acknowledg			Douglas Pa	artners Pty L	td
					14	_		and return b			Email:	ation A rdourd	looporthoro com au
	Total number of samples in container:					FA.C	P		laspartners.com.au				
	Date relinquished: 814/20										aspartners.com.au		
	Results required by □ Same day □ 24 hours □ 48 hours □ 72 hours X Standard					Date:					laspartners.com.au		
	u Quin							Lab Ref:	F7	11:3.5-		4	

ч

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Paulo Sebastian

Sample Login Details	
Your reference	91601.03, Muswellbrook
Envirolab Reference	240645-A
Date Sample Received	09/04/2020
Date Instructions Received	24/04/2020
Date Results Expected to be Reported	01/05/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	69 Soil, 6 Material
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	11.9
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201

customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	PAHs in water leach	On Hold
B1-1																								\checkmark
B1-2																								\checkmark
B1-3																								\checkmark
B1-4																								\checkmark
B2-1																								\checkmark
B2-2																								\checkmark
B2-3																								✓
B2-4																								✓
B3-1																								✓
B3-2																								\checkmark
B3-3																								\checkmark
B3-4																								\checkmark
B4-1																								✓
B4-2																								✓
B4-3																								✓
B4-4																								✓
B5-1																								✓
B5-2																								✓
B5-3																								\checkmark
B5-4																								\checkmark

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	PAHs in water leach	On Hold
B6-1																								✓
B6-2																								✓
B6-3																								✓
B6-4																								\checkmark
B7-1																								\checkmark
B7-2																								✓
B7-3																								\checkmark
B7-4																								\checkmark
B8-1																								\checkmark
B8-2	✓	✓	✓	✓	✓																			
B8-3																								\checkmark
B8-4																								\checkmark
B9-1																								\checkmark
B9-2																								\checkmark
B9-3																								\checkmark
B9-4																								\checkmark
B10-1																								\checkmark
B10-2																								\checkmark
B10-3																								\checkmark
B10-4																								\checkmark

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	PAHs in water leach	On Hold
F1/JRK																								✓
F2/JRK																								\checkmark
F3/JRK																								\checkmark
F4/JRK																								\checkmark
F5/JRK																								\checkmark
F6/JRK																								\checkmark
D1/JRK																								\checkmark
D2/JRK																								\checkmark
D3/JRK																								✓
D4/JRK																								\checkmark
401/0.05																								\checkmark
401/0.15																								\checkmark
402/0.4																								\checkmark
404/0.2																								✓
406/0.35																								✓
106A/0.25																								\checkmark
106A/0.35																								\checkmark
106A/0.5																								✓
407/0.28																								\checkmark
411/0.01																								\checkmark

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	pH of soil for fluid#determ.	pH of soil TCLP (after HCI)	Extraction fluid used	pH of final Leachate	Lead in TCLP	Naphthalene in TCLP	Acenaphthylene in TCLP	Acenaphthene in TCLP	Fluorene in TCLP	Phenanthrene in TCLP	Anthracene in TCLP	Fluoranthene in TCLP	Pyrene in TCLP	Benzo(a)anthracene in TCLP	Chrysene in TCLP	Benzo(bjk)fluoranthene in TCLP	Benzo(a)pyrene in TCLP	Indeno(1,2,3-c,d)pyrene - TCLP	Dibenzo(a,h)anthracene in TCLP	Benzo(g,h,i)perylene in TCLP	Total +vePAH's	Surrogate p-Terphenyl-d14	PAHs in water leach	On Hold
412/0.15																								\checkmark
413/0.15	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	\checkmark	
D1/JPS																								\checkmark
D3/JPS																								\checkmark
301/1																								\checkmark
301/2																								\checkmark
301A/2																								\checkmark
303/1																								✓
303/2																								✓
304/1																								\checkmark
306/1																								\checkmark
306/2																								\checkmark
307/1																								✓
307/2																								\checkmark
D7/JPS																								✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : ES2012239	
Client: DOUGLAS PARTNERS PTY LTDLaboratory: Environmental Division SContact: MR PAULO SEBASTIANContact: Customer Services ESAddress: PO BOX 472 96 HERMITAGE ROADAddress: 277-289 Woodpark RoaWEST RYDE NSW, AUSTRALIA 1685NSW Australia 2164	, ,
E-mail : paulo.sebastian@douglaspartners.c E-mail : ALSEnviro.Sydney@AL	SGlobal.com
Telephone : +61 02 49609600 Telephone : +61-2-8784 8555	
Facsimile : +61 02 49609601 Facsimile : +61-2-8784 8500	
Project : 91601.03 Page : 1 of 3	
Order number : 150084 Quote number : EM2017DOUPAR0002 ((EN/222)
C-O-C number : QC Level : NEPM 2013 B3 & ALS C	QC Standard
Site : Muswellbrook	
Sampler :	
Dates	
Date Samples Received : 09-Apr-2020 11:35 Issue Date : 14-Apr-20	20
Client Requested Due : 20-Apr-2020 Scheduled Reporting Date : 20-Apr-	-2020
Delivery Details	
Mode of Delivery : Carrier Security Seal : Not Availa	able
No. of coolers/boxes : 1 Temperature : 11.7	
Receipt Detail No. of samples received / analysed 4 / 4	

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The absence of this summary table indicates that all samples have been received
 within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL

tasks, that are incluing default 00:00 on	uded in the package. time is provided, the date of samplin sampling date wi	g. If no sampling date	3	(solids) ICP-AES	ø	OIL - S-19 RH/BTEXN/PAH/Ph/OC/OP/PCB/8 metals	H + Phenols
Matrix: SOIL Laboratory sample	Client sampling date / time	Client sample ID	SOIL - EA055-103 Moisture Content	SOIL - EG005T (Total Metals by I	SOIL - S-12 OC/OP Pesticides	SOIL - S-19 TRH/BTEXN/PA	SOIL - S-24 TRH/BTEXN/PAH
ES2012239-001	07-Apr-2020 00:00	T1/JPS	✓				✓
ES2012239-002	07-Apr-2020 00:00	T2/JPS	✓	✓		✓	✓
ES2012239-003	07-Apr-2020 00:00	T2/JRK	✓		1		
ES2012239-004	07-Apr-2020 00:00	T3/JRK	✓	✓	1		

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOL	INTS	BRISB	

ACCOUNTS BRISBANE		
- A4 - AU Tax Invoice (INV)	Email	brisbane@douglaspartners.com.au
	– "	
- A4 - AU Tax Invoice (INV) CHRIS BOZINOVSKI	Email	accounts@douglaspartners.com.au
- *AU Certificate of Analysis - NATA (COA)	Email	chris.bozinovski@douglaspartners.c
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	om.au chris.bozinovski@douglaspartners.c
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	om.au chris.bozinovski@douglaspartners.c
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	om.au chris.bozinovski@douglaspartners.c om.au
- Chain of Custody (CoC) (COC)	Email	chris.bozinovski@douglaspartners.c om.au
- EDI Format - ENMRG (ENMRG)	Email	chris.bozinovski@douglaspartners.c om.au
- EDI Format - ESDAT (ESDAT)	Email	chris.bozinovski@douglaspartners.c om.au
- EDI Format - XTab (XTAB)	Email	chris.bozinovski@douglaspartners.c om.au
JOSH KRAMER		omau
- *AU Certificate of Analysis - NATA (COA)	Email	Josh.kramer@douglaspartners.com .au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Josh.kramer@douglaspartners.com .au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Josh.kramer@douglaspartners.com .au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Josh.kramer@douglaspartners.com .au
- Chain of Custody (CoC) (COC)	Email	Josh.kramer@douglaspartners.com .au
- EDI Format - ENMRG (ENMRG)	Email	Josh.kramer@douglaspartners.com .au
- EDI Format - ESDAT (ESDAT)	Email	Josh.kramer@douglaspartners.com .au
- EDI Format - XTab (XTAB)	Email	Josh.kramer@douglaspartners.com .au
PAULO SEBASTIAN		
- *AU Certificate of Analysis - NATA (COA)	Email	paulo.sebastian@douglaspartners.c om.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	paulo.sebastian@douglaspartners.c om.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	paulo.sebastian@douglaspartners.c om.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	paulo.sebastian@douglaspartners.c om.au
- Chain of Custody (CoC) (COC)	Email	paulo.sebastian@douglaspartners.c om.au
- EDI Format - ENMRG (ENMRG)	Email	paulo.sebastian@douglaspartners.c om.au
- EDI Format - ESDAT (ESDAT)	Email	paulo.sebastian@douglaspartners.c om.au
- EDI Format - XTab (XTAB)	Email	paulo.sebastian@douglaspartners.c om.au

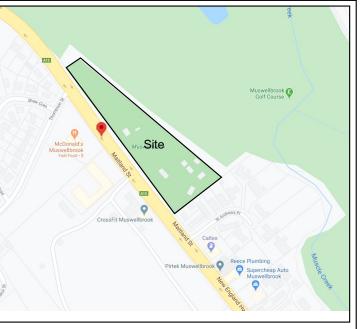
20/4120

CHAIN OF CUSTODY DESPATCH SHEET (2)

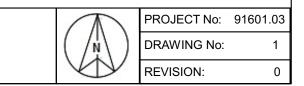
Project No: 91601.03 Suburb/Town: Muswellbrook		To: ALS Environmental			
DP Order No: 150 084	DP Contact Person: Paulo Sebastian / Chris Bozinovski	277-289 Woodpark Rd, Smithfield NSW 2164			
Prior Storage: Esky X Fridge 🗆 She		Ph: (02) 8784 8555	Attn: Barbara Hannah		
Do samples contain 'potential' HBM? Yes 🗹 No 🗌 (If YES, then handle, transport and store in accordance with FPM HAZID)					

[Sample				Analytes					Notes	s .					
		DP ID		Date Sampled	Type S-soil W-water	Lab ID	TRH, PAH, Phenol	TRH, BTEX, PAH, Phenols, OCP, OPP, PCB, Metals (12)	OCP, OPP	Lead	Asbestos rin soil (500mL)	Asbestos I.D Material				
۱[11	JPS		7/4/20	S		\checkmark								· .	
۲	12	/JPS							· · · · · · · · · · · · · · · · · · ·			*			L _	
ל [12	/JR	ĸ									F	nviron	mental [Division	_
1	, T3	/JR	ĸ							\checkmark						
ſ													FS	2012	erence 2239	
ſ																
ļ													élephone :	+ 61-2-8784	£1555	
	PQL (S	S) mg/kg				F										
ľ	PQL (\	N) mg/L	ANZ	ECC PQLs req	'd for all water	analytes 🛛										
-	PQL =	oractical qu	antitatio	on limit. If none	e given, defaul	It to Laboratory Me	thod Detection	Límit	SAMPLES			Send result	ts to:			
-	*Metal	s to Analy	vse (Ple	ease circle) A	s, Cd, Cr, C	u, Pb, Zn, Hg, N	, Mn, Fe, Al,	Se, Sn, Sb, Mg, Co, B,	Please sign acknowledg			Douglas Pa	artners	Pty Ltd		
-						14			and return b		1	Email:	ation 🏝	ata (al		
										ł		spartners.com.	<u>.au</u>			
									Signature: .	U					rtners.com.au	
	Resi ⊓ Sa	ults requ me day	uired I	by . hours □ 48	8 hours 🗆	72 hours X 9	Standard	·····		\$ /y/~	-	<u>chris.bozin</u>	ovski'@	douglas	spartners.com.	.au
		ine udy	U 2 4						Lab Ref:	<i></i>	11:3:5		4			

ч


Appendix D

Drawing 1 – Test Location Plan (Test Pits) Drawing 2 – Test Location plan (Surface and Stockpile Samples) Photoplates



CLIENT: Pacific Brook C	hristian School Ltd	TITLE:	Test Location Plan
OFFICE: Newcastle	DRAWN BY: PLH		Supplementary Detailed Site Investigation (Contamination)
SCALE: 1:1250 @ A3	DATE: 12.May.2020		Lot 100, DP1261496, Maitland Street, Muswellbrook NSW

Site Location

- Approx Location of Test Pits (current investigation)
 - Approx Location of Geotechnical Test Pits (current investigation)
 - Approx Location of Test Pits (previous investigation-DP,2019)
 - Approx Location of Previous Boreholes & Wells (previous investigation-DP,2019)
- Approx Location of Boreholes (JK Environment)

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: Pacific Brook Christian School Ltd		TITLE:	Test Location Plan (Surface & Stockpile Samples)
OFFICE: Newcastle	DRAWN BY: PLH		Supplementary Detailed Site Investigation (Contamination)
SCALE: @A3	DATE: 12.May.2020		Lot 100, DP1261496, Maitland Street, Muswellbrook NSW

Legend

- Approx. Location of Fibro Samples
- Approx. Location of Surface Samples (B1-B10)
- ✗ Approximate Stockpile Sampling Locations
- Approx. Stockpile Locations (301-307)
- Site Boundary
- Approx Location of Confirmed ACM on Surface

(Λ	1
V		J

PROJECT No:91601.03DRAWING No:2REVISION:0

Figure 1: Residential backyard east of the eastern boundary, looking south.

Figure 2: Residential backyard east of the eastern boundary with small stockpiles of scrap metal looking south.

	Site Pho	otographs	PROJECT:	91601.03
Douglas Partners Geotechnics Environment Groundwater	Propose	ed School	PLATE No:	1
	Lot 100 Maitland St, Muswellbrook		REV:	0
	CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20

	Site Pho	otographs	PROJECT:	91601.03
Douglas Partners Geotechnics Environment Groundwater	Propose	ed School	PLATE No:	2
	Lot 100 Maitland St, Muswellbrook		REV:	0
	CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20

Figure 5: Area of buried asphalt access track, north of the Building 5, looking west.

Figure 6: Stockpile 301 located in the eastern portion of the site, generally comprising gravelly silty sand and abundant vegetation.

	Site Pho	otographs	PROJECT:	91601.03
Douglas Partners Geotechnics Environment Groundwater	Propose	ed School	PLATE No:	3
	Lot 100 Maitland St, Muswellbrook		REV:	0
	CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20

CLIENT: Pacific Brook Christian School Ltd DATE: 25-Aug-20

Figure 17: Typical surface area along the north eastern side of Building 5.

Figure 18: Garden bed situated along the south western face of Building 5.

	Site Pho	tographs	PROJECT:	91601.03
	Propose	d School	PLATE No:	10
'S ter	Lot 100	Maitland St, Muswellbrook	REV:	0
107	CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20

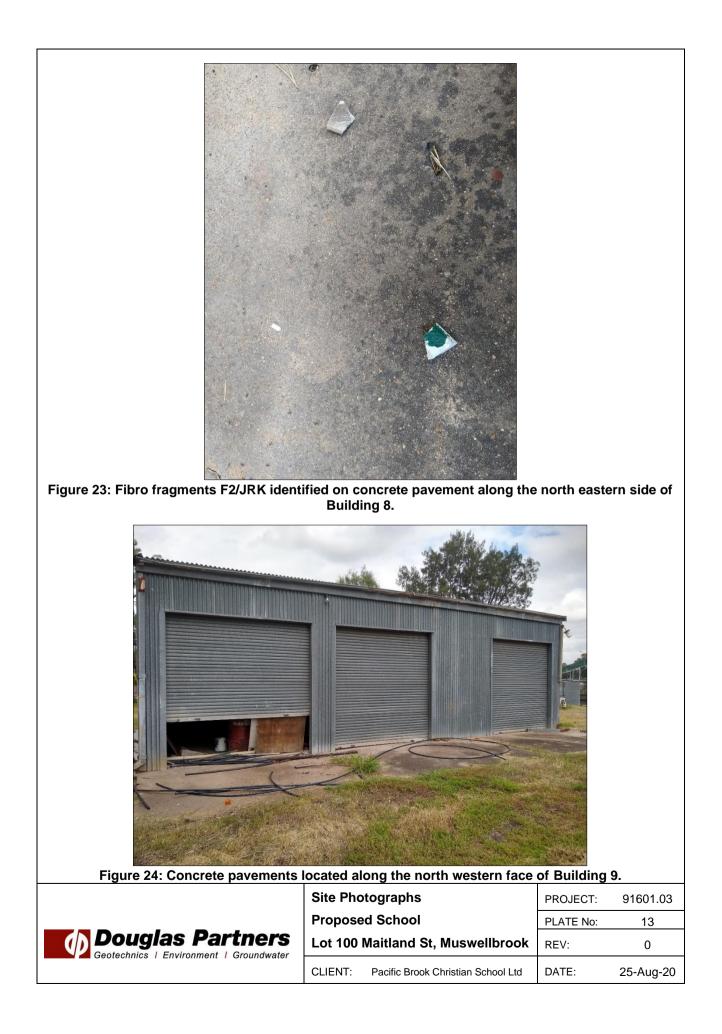

Figure 21: Surface area found along the north eastern face of Building 8.

Figure 22: Garden bed running along the south western face of Building 8.

Site Photographs	PROJECT:	91601.03
Proposed School	PLATE No:	12
Lot 100 Maitland St, Muswellbrook	REV:	0
CLIENT: Pacific Brook Christian School Ltd	DATE:	25-Aug-20

	Proposed Sch
Douglas Partners	Lot 100 Maitla

Site Photographs		PROJECT:	91601.03	
Propos	ed School	PLATE No: 14		
Lot 100	Maitland St, Muswellbrook	REV:	0	
CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20	

Figure 27: Typical surface area of Building 10.

Figure 28: Fibro fragment F4/JRK located along the southern side of Building 10.

Site Photographs		PROJECT:	91601.03	
Propose	ed School	PLATE No:	15	
Lot 100	Maitland St, Muswellbrook	REV:	0	
CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20	

Figure 29: Garden bed located along the western face of Building 6.

Figure 30: Typical surface area along north western face of Building 6.

Site Photographs		PROJECT:	91601.03
Propose	ed School	PLATE No: 16	
Lot 100	Maitland St, Muswellbrook	REV:	0
CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20

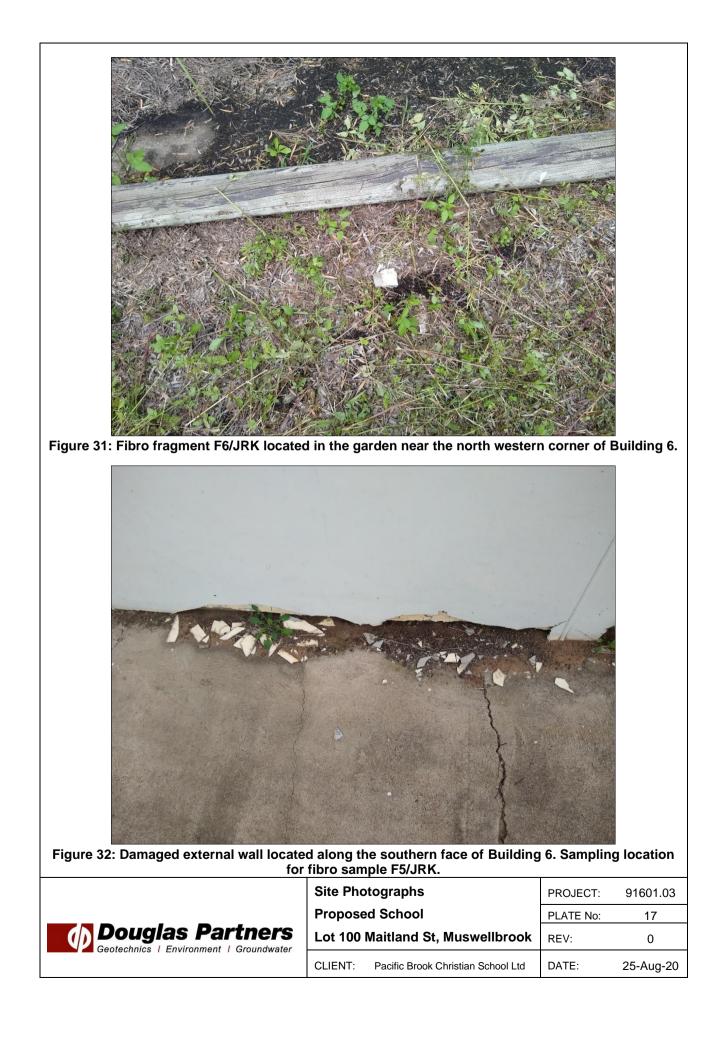
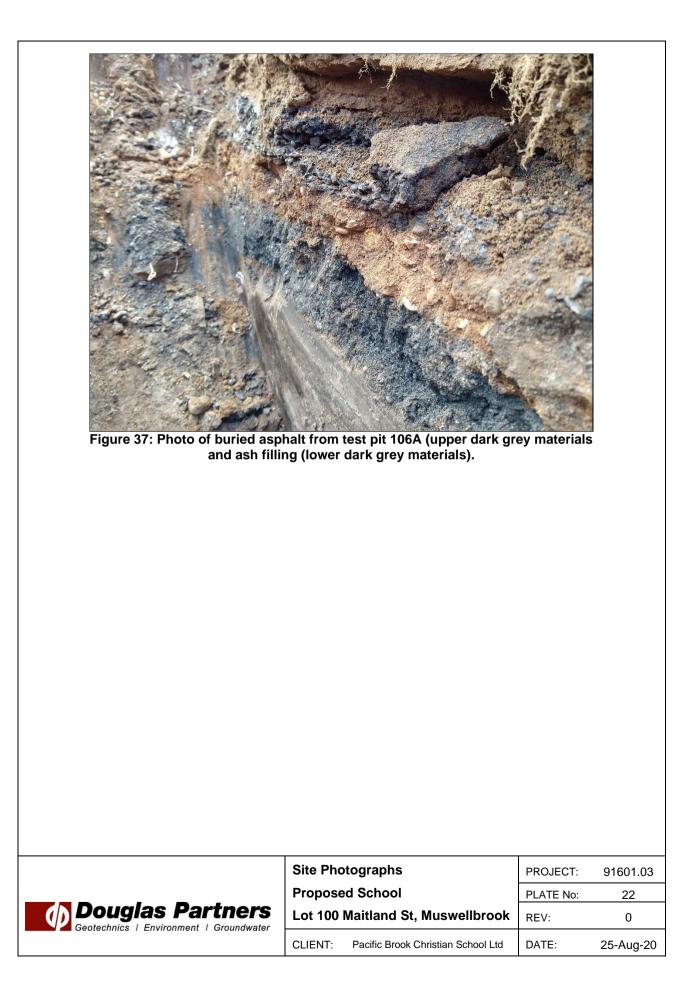


Figure 33: Typical surface area of Building 1.

Figure 34: Surface area along the eastern face of Building

e area along the eastern face of Building 1.					
S ter	Site Pho	tographs	PROJECT:	91601.03	
	Propose	d School	PLATE No:	18	
	Lot 100	Maitland St, Muswellbrook	REV:	0	
	CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20	


Asphalt Sample 1 DP: 401/0.05 Envirolas: 240645-51 B(a) p = 7.6 mg/kg Figure 35: Photo of surface asphalt from test pit 401.

	Site Pho	otographs	PROJECT:	91601.03
Douglas Partners	Proposed School		PLATE No:	19
	Lot 100	Maitland St, Muswellbrook	REV:	0
	CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20

Asphalt Sample 2 DP: 106A/0.25 Enides: 240645-56 B(a) p = < PRL Previously = 62 mg/kg Figure 36: Photo of buried asphalt from test pit 106A.

	Site Pho	otographs	PROJECT:	91601.03
Douglas Partners	Proposed School		PLATE No:	20
	Lot 100	Maitland St, Muswellbrook	REV:	0
	CLIENT:	Pacific Brook Christian School Ltd	DATE:	25-Aug-20

Asphalt Sample 3 De 497/0.28 Envirolub: 240645-59 90 mg/kg B(a)p Figure 37: Photo of buried asphalt from test pit 407. Site Photographs PROJECT: 91601.03 **Proposed School** PLATE No: 21 **Douglas Partners** Lot 100 Maitland St, Muswellbrook REV: 0 Geotechnics | Environment | Groundwater CLIENT: Pacific Brook Christian School Ltd DATE: 25-Aug-20

