POLLUTION INCIDENT RESPONSE MANAGEMENT PLAN

DENMAN WASTEWATER SCHEME (EPL #5059)

Version 15.0 February 2025

Document Control

Version	Author Reviewer		Approved for Issue	
			Name	Date
Final	J.Pante	B.Douglas	K.Fernando	02.04.2014
Rpt No: 14025				
Reviewed & Updated		I Chetty	G.Lategan	17.05.2018
Reviewed & Updated		I Chetty		14.06.2020
Reviewed		I Chetty		16.06.2021
Reviewed & Updated		A.Worth & I.Chetty		19.08.2021
Reviewed & Updated		R.Bates & I.Chetty		30.05.2022
Reviewed & Updated		M.Winning M.Donnelly	S.lagunkov	21.02.2025

PIRMP Testing

Date	Tested By	Test details	Reason for	Next test
Tested			testing	date
26/2/2025	M. Donnelly	Test conducted at Denman Sewer Pump Station#2. Scenario tested: wet weather sewerage overflow. Notification procedure has been tested with mock calls done. Test was deemed successful.	Annual Review	Feb 2026

Foreword

This Pollution Incident Response Management Plan (PIRMP) for the Denman Sewerage Scheme is a document that has been developed for Muswellbrook Shire Council's (MSC) use in the operation and management of incidents at the Denman Sewage Treatment Plant (STP) and its sewerage collection system. The purpose of this plan is to ensure that, where possible, pollution incidents are avoided but if they do occur, they are managed appropriately to minimise the effects on the environment and to human health.

This PIRMP addresses the requirements under Part 5.7A of the *Protection of the Environment Operations Act (POEO)* 1997.

The objectives of the plan are to:

- communicate in a timely manner and with sufficient detail about a pollution incident to relevant authorities and people outside the facilities who may be affected by the impacts of the pollution incident;
- minimise and control the risk of any pollution incident occurring at the facilities by requiring identification of risks and the development of planned actions to minimise and manage those risks; and
- ensure that the plan is properly implemented by trained staff, identifying persons responsible for implementing it, and ensuring that the plan is regularly tested for accuracy, currency and suitability.

This management plan is to be continually updated and reviewed by the Operations Manager Water and Wastewater, Muswellbrook Shire Council.

Contents Table of Contents

Tab	Table of Contents4				
Ab	Abbreviations				
1	Intro	duction			
	1.1	Sewag	ge Treatment Plant and Collection System		
	1.2	Scope	of the PIRMP		
2	Conte	ext of th	e Assessment		
	2.1	Backg	round		
	2.2	Counc	il Commitment		
	2.3	Regula	atory and Formal Requirements		
	2.4	NSW I	EPA Licence		
3	Asse	ssment	of the Risks	19	
4	Preve	entative	Actions to be Undertaken	29	
	4.1	.1 General2			
	4.2	Collection System		29	
		4.2.1	Pipelines	29	
		4.2.2	Pumping Stations		
		4.2.3	Pumping and storage capacity		
		4.2.4	Reliable Power Supply		
		4.2.5	Provision of Emergency Storage		
		4.2.6	Telemetry System		
		4.2.7	Response Times to Abnormal Operating Conditions		
		4.2.8	Stand-by Pumps		
	4.3	Sewag	ge Treatment Plant (STP)		
		4.3.1	Dry Weather	355	
		4.3.2	Wet Weather	355	

	4.4 S	ewage	Treatment Plant Chemical Spills	
5	Inven	itory of	Pollutants	
	5.1	Invent	ory of Stored Chemicals	
	5.2	Chem	ical Usage	
	5.3	Other	Pollutants – Sewage and Effluent	
6	Safet	y Equip	oment	
	6.1	List of	PPE Equipment Onsite	
	6.2	List of	Monitoring Devices	
7	Roles	s, Resp	onsibilities and Contact Details	
	7.1	Stake	holder Responsibilities and Engagement	
	7.2	List of	Contact Details	
	7.3	Cound	cil Procedures for Contacting Staff to Respond to a Possible Inc	ident47
8	Com	munica	ting with Neighbours and the Community	
	8.1	Polluti	ion Incident Management	
		8.1.1	Sewerage Incident Notification Protocol	48
		8.1.2	Significant Public Health Risk Events	
		8.1.3	Information to be collected	49
		8.1.4	Event Notification	
	8.2	Invest	igation of Incidents and Emergencies	500
9	Minin	nising H	larm to Persons on the Premises	500
	9.1	Attend	dance Register	
	9.2	Site In	nduction	
	9.3	Evacu	ation Procedure	500
	9.4	Emerg	gency Assembly Point	
	10.1	Minor	Incident Action Plan	511
	10.2	Mode	rate Incident Action Plan	
	10.3	Major	Incident Action Plan	533
	11.1	Evalua	ation and Review	
			Page 5 of 56	Version 15.0 February 2025

	11.2 Auditing	544
12	References	555
13	Appendix – Denman Staff Record/Register of Training	566

Figures

Figure 1.1 Denman Sewerage System	11
Figure 1.2 Denman STP	12
Figure 4.1 Pump Station DSPS1	
Figure 4.2 Pump station DSPS2	31
Figure 4.3 Raw Sewage Inlet Channel	33
Figure 4.4 IDEA Biological Reactor	34
Figure 4.5 Maturation Ponds	
Figure 4.6 Sludge Lagoons	35
Figure 5.1 Denman re-use system	37
Figure 6.1 Overview of Denman Sewer Treatment	
Figure 10.1 Minor Incident Action Plan	51
Figure 10.2 - Moderate Incident Action Plan	52
Figure 11.3 Major Incident Action Plan	53

Tables

Table 2.1:	Council's Sewerage and Environmentally related Objectives and Strategies16
Table 2.2:	Formal and Regulatory Requirements17
Table 3.1:	Definitions of Likelihood 19
Table 3.2:	Definitions of Impact
Table 3.3:	Risk Analysis Criteria21
Table 3.4:	STP Risk Register
Table 3.4:	Risk Register (continued)25
Table 5.1:	Inventory of Stored Chemicals
Table 5.2:	Pollutant List – Sewage and Effluent36
Table 5.3:	Maximum amount of pollutants in respective parts of the plant
Table 6.1:	List of PPE
Table 6.2:	List of Monitoring Devices
Table 6.3:	List of monitoring devices
Table 6.4:	SCADA alarms list40
Table 7.1:	Stakeholder Responsibilities and Engagement44
Table 7.2:	Stakeholder Contact Details

Abbreviations

Abbreviation	Description
%	Percent
ABS	Australian Bureau of Statistics
ADWF	average dry weather flow
Ave.	Average
BOD5	(5 day) biochemical oxygen demand
D	day
DFS	(NSW) Department of Finance and Services
DSPS	Denman Sewage Pumping Station
EP	equivalent person or equivalent population
EPL	Environment Protection Licence
G	grams
hr	hours
IDEA	Intermittent Decanted Extended Aeration
Kg	kilogram
kg/d	kilogram per day
kg/h	kilogram per hour
kL	Kilolitres
kL/d	kilolitres per day
L	Litre
L/EP/d	litres per EP per day
L/s	litres per second
Μ	metres
max.	maximum
mg/L	milligrams per litre
min.	minimum
mins	minutes
mL	millilitre
mm	millimetres
MSC	Muswellbrook Shire Council
MSDS	material safety data sheet
Ν	Nitrogen
NATA	National Association of Testing Authority (Australia)

NFR	non-filterable residue		
NH3	ammonia		
NH3-N	ammonia nitrogen		
NO	nitrites and nitrates (oxidised nitrogen)		
NSW EPA	New South Wales Environment Protection Authority		
O&G	oil and grease		
Ortho-P	orthophosphates		
Р	phosphorus		
рН	unit of measure of hydrogen ion activity in solutions		
PIRMP	Pollution Incident Response Management Plan		
POEO	Protection of the Environment Operations (Act)		
PPE	personal protective equipment		
SPS	sewage pumping station		
SCADA	Supervisory Control and Data Acquisition System		
SS	suspended solids		
STP	sewage treatment plant		
TKN	total kjeldahl nitrogen		
TN	total nitrogen		
TP	total phosphorus		
TSS	total suspended solids		
Yr	year		

1 Introduction

The township of Denman is located 235 km north of Sydney. Denman Urban Centre Locality currently has a population of approximately 1,400 people.

Denman is in the Muswellbrook Local Government Area (LGA). Muswellbrook Council owns and operates the Denman Wastewater Scheme. The scheme consists of a Wastewater (Sewage) treatment plant (STP) and the collection system servicing the town.

1.1 Sewage Treatment Plant and Collection System

The Denman STP comprises the following treatment /process units:

- Inlet structure and screen
- Intermittently Decanted Extended Aeration (IDEA) biological reactor
- Maturation ponds (2 in series)
- Sludge Lagoons (2, duty/stand-by)
- Drying bed

The Denman sewerage collection system comprises the following:

- Sewage transfer pump stations DSPS1 and DSPS2
- Associated gravity mains and rising mains

Sewage is pumped to the STP via DSPS1. DSPS1 collects flow from its catchment plus pumped flow from DSPS2. DSPS2 collects sewage from the northern half of the town and pumps into DSPS1. Tertiary treated effluent is pumped to a reservoir for subsequent reuse at the local golf course and sporting fields. Denman Creek and the Hunter River run on either side of the STP. Surcharges from DSPS1 and its catchment will flow directly into Denman Creek. Surcharges from DSPS2 and its catchment will flow into Sandy Creek. Sandy Creek and Denman Creek subsequently flow into the Hunter River.

Figures 1.1 and **1.2** indicate the locations of receiving waters relative to the STP and the pumping stations.

The STP and its collection system operates under Environmental Protection Licence (EPL) No. 5059 granted by the NSW Environment Protection Authority (EPA).

Figure 1.1. Denman Sewerage System

Figure 1.2. Denman STP Overview

1.2 Scope of the PIRMP

The scope of the plan is as follows:

- ✓ Description and likelihood of hazards;
- ✓ Pre-emptive actions to be taken;
- ✓ Inventory of pollutants;
- ✓ Safety equipment;
- ✓ Contact details;
- ✓ Communicating with neighbours and the local community;
- ✓ Minimising harm to persons on the premises;
- ✓ Maps showing location of scheme components;
- ✓ Actions to be taken during or immediately after a pollution incident; and
- ✓ Staff training (i.e. annual review of plan and annual test of plan).

2 Context of the Assessment

2.1 Background

A new provision under the *Protection of the Environment Operations Act (POEO)* 1997 is the requirement to prepare, keep, test and implement a pollution incident response management plan for each environmental protection licence that Council holds.

The objectives of these plans are to:

- communicate in a timely manner and with sufficient detail about a pollution incident to relevant authorities and people outside the facilities who may be affected by the impacts of the pollution incident;
- minimise and control the risk of any pollution incident occurring at the facilities by requiring identification of risks and the development of planned actions to minimise and manage those risks; and
- ensure that the plan is properly implemented by trained staff, identifying persons responsible for implementing it, and ensuring that the plan is regularly tested for accuracy, currency and suitability.

The NSW EPA defines a "pollution incident" as follows:

"Pollution incident means an incident or set of circumstances during or as a consequence of which there is or is likely to be a leak, spill or other escape or deposit of a substance, as a result of which pollution has occurred, is occurring or is likely to occur. It includes an incident or set of circumstances in which a substance has been placed or disposed of on premises, but it does not include an incident or set of circumstances involving only the emission of any noise".

A pollution incident is required to be notified if there is a risk of 'material harm to the environment', which is defined in section 147 of the POEO Act as:

(a)harm to the environment is material if:

- (i) it involves actual or potential harm to the health or safety of human beings or to ecosystems that is not trivial, or
- (ii) it results in actual or potential loss or property damage of an amount, or amounts in aggregate, exceeding \$10,000 (or such other amount as is prescribed by the regulations), and

(b)loss includes the reasonable costs and expenses that would be incurred in taking all reasonable and practicable measures to prevent, mitigate or make good harm to the environment.

Page 14 of 56

Industry is now required to report pollution incidents *immediately* to the EPA, NSW Health, Fire and Rescue NSW, SafeWork NSW and the local council. "Immediately" has its ordinary dictionary meaning of promptly and without delay. These strengthened provisions will ensure that pollution incidents are reported directly to the relevant response agencies so they will have direct access to the information they need to manage and deal with the incident in as fast a time as is practical.

The NSW EPA requires a PIRMP to be implemented for all existing licenses. Council has EPL #5059 for the Denman STP and its collection system.

2.2 Council Commitment

Muswellbrook Shire Council is committed to protecting the health of the public, the environment and its workers. This commitment has been formalised and is contained in Council's Operational Plan.

The Local Government Act contains a Charter for Local Government which describes the approach to supplying services and activities. It charges local government with a number of responsibilities including but not limited to the following:

- to provide directly or on behalf of other levels of government, after due consultation, adequate, equitable and appropriate services and facilities for the community and to ensure that those services and facilities are managed efficiently and effectively;
- to exercise community leadership;
- to properly manage, develop, protect, restore, enhance and conserve the environment of the area for which it is responsible, in a manner that is consistent with and promotes the principles of ecologically sustainable development;
- to bear in mind that it is the custodian and trustee of public assets and to effectively account for and manage the assets for which it is responsible;
- to engage in long-term strategic planning on behalf of the local community;
- to keep the local community and the State government (and through it, the wider community) informed about its activities;

Relevant Council objectives and strategies with respect to its sewerage and environmentally related operations as stated in its management plan are summarised in **Table 2.1** (refer to management plan for detailed objectives and strategies).

 Table 2.1 Council's Sewerage and Environmentally related Objectives and Strategies.

Objective	Strategies
Operate water supply and	Operate to Water and Sewerage Strategic Business
sewerage systems to provide	Plans.
levels of service (LOS) stated	• Monitor and review, as necessary, the effectiveness of
in the Strategic Business Plan	Water and Sewerage section structure to ensure the most
(SBP)	beneficial arrangement for both staff and customers on an
	on-going basis.
	• Review, update and implement training program for water
Effectively Manage Council's	• Develop a comprehensive asset management plan for
Water and sewer assets.	Council's water and sewer assets.
	Continue with pipe replacement program.
Provide water and sewer	Assess LOS consistent with best practice.
service to the service areas of	• Assess short-, medium- and long-term strategies for
the Muswellbrook LGA that	servicing growth in urban areas in the LGA.
are sustainable, affordable,	• Reduce water demand by encouraging wise use of water.
best value and represent	• Reduce infiltration to and from the sewerage system.
industry best practice.	
Reuse* 100% of effluent in	Operate system to achieve effluent quality as determined.
Muswellbrook and Denman	Regular sampling and testing of decanted effluent from
excluding peak and wet	the IDEA reactor and from the maturation pond, prior to
weather conditions.	pumping to reuse system. Do not pump to reuse system
	when effluent quality exceeds limits.
	• Prevent access to irrigation areas when irrigating. (i.e.
	allow for a withholding period)
Effectively manage	Review legislative changes to determine impact on
contaminated sites to protect	Council's roles and responsibilities.
the environment, public health	• Prepare plan information system mapping of land
and safety.	suspected to be subject to contamination practices.
Monitor water quality and	Monitor water quality in Hunter River and tributaries on a
identify trends.	monthly basis.
	• Maintain records of monitoring results to enable water
	quality trends identification.

2.3 Regulatory and Formal Requirements

The regulatory and formal requirements applicable to the Denman Sewerage Scheme are shown in Table 2.2. These legislative and licensing requirements and guidelines are to be met to ensure the protection of environmental and public health and to satisfy work health and safety (WHS) requirements. This management plan addresses how these requirements are to be met.

Table 2.2	Formal and Regulatory Requirements
	i onnai and regulatory requirements

Parameter		Instrument	Administered
Overall	Water Management	 Granting of water licenses 	NSW EPA
Scheme	Act, 2000	 Integrated management of water 	
Operation		resources	
	Local Government	Approval to construct extend water	NSW
	Act 1993 – Section	supply/treatment works	DCCEEW
	Catchment	Management of natural resources	Water NSW
	Management	at a catchment level	
	Authorities Act 2003		
	Protection of the	 Granting/refusal of Environment 	NSW EPA
	Environment	Protection Licence (EPL)	
	Operations Act		
	(POEO) 1997 –		
Public Health	Public Health Act	 Promotion, protection and 	NSW Health
	2010	improvement of public health	
		 Control risks to public health 	
		• Promoting control and preventing	
		spread of infectious diseases	
Environmental	Protection of the	• Protection, Restoration and	NSW EPA
Health	Environment	Enhancement of the quality of the	
	Operations Act	environment	
	(POEO) 1997		
	Part 5.7A of POEO	Pollution Incident Response	
	Act 1997	Management Plan (PIRMP)	
		compliance	
WHS	Work Health and	• Promote and ensure health and	SafeWork
	Safety Act 2011	safety of workers	NSW

Plumbing	AS/NZS 3500 -	• Ensures all pipework associated	Network Utility
	Plumbing and	with recycled water schemes is	Operator
	Drainage Code	installed in accordance with	(Muswellbrook
	1996-2003	standard	Shire Council)

Operations Manager Water & Wastewater Muswellbrook Shire Council is responsible for the review and evaluation of this plan.

2.4 NSW EPA Licence.

Denman STP is covered by Environment Protection Licence (EPL) No. 5059. The licence restricts the effluent quality discharge by the plan to the following 100 percentile limits:

- Biological Oxygen Demand (BOD) 20mg/L
- Total Suspended Solids (TSS) 30mg/L
- Oil and Grease (O&G) 10mg/L
- pH 6.5 8.5
- Volume 2100kL/day

The STP has not discharged into receiving waters since 2009. All effluent is transferred to, chlorinated and utilised for irrigating the golf course and sporting fields. Effluent reuse is not a licensed activity and therefore not covered by this PIRMP.

3 Assessment of the Risks

A risk assessment was undertaken with Council's water and sewerage staff at Denman. The objective of the assessment was to:

- identify the hazards,
- identify hazardous events
- assessment of the likelihood of the event and other factors that may increase the likelihood
- assess the impacts
- assess the overall risk.

Shown in Table 3.1, Table 3.2 and Table 3.3 are the likelihood, impact and risk criteria used in the assessment.

As can be seen in Table 3.4, the residual STP and SPS risks are rated as low to moderate. Inundation of DPS1 produces the greatest risk because the pump well is currently located below 1 in100yr flood levels. The STP is licensed to discharge into the effluent pond designated as "EPA Identification Point 1" on the plan.

Table 3.1.	Definitions	of Likelihood
------------	-------------	---------------

Level	Likelihood	Description
A	Almost certain	The event is expected to occur often (several times per year)
В	Likelv	The event will probably occur often (once every 1-3 years)
C	Possible	The event might occur at some time (once every 3 to 10 years)
 	l Inlikely	The event could occur at some time (once every 20 years)
 Г	Dara	The event way accur only in executional sireumstances (and
Ш	Rare	every 100 years)

Table 3.2 Definitions of Impact

Level	Classification	Description
1	Insignificant	The overflow is extremely unlikely to drain to a local
		sensitive environment* and:
		- Where the overflow reaches waters, the volume of
		sewage likely to enter the waterways is insignificant with
		regard to the volume and flow of receiving waters, or
		- Where the overflow reaches land, it is likely to be
		contained in an area with little chance of public exposure
		within the maximum response time**
2	Minor	The overflow is unlikely to drain to a local sensitive
		environment* and:
		- Where the overflow reaches waters, the volume of
		sewage likely to enter the waterways may be significant with
		regard to the volume and flow of receiving waters, or
		- Where the overflow reaches land, it is likely to be
		contained in an area where the public exposure is minimal
		given the maximum response time**
3	Moderate	The overflow is likely to drain to a local sensitive
		environment* and:
		- Where the overflow reaches waters, the volume of
		sewage likely to enter the waterways is significant with
		regard to the volume and flow of receiving waters, or
		- Where the overflow reaches land, it may travel to an
		area where public exposure is low within the maximum
		response time**
4	Major	The overflow is likely to drain to a local sensitive
		environment* and:
		- Where the overflow reaches waters, the volume of
		sewage likely to enter the waterway is high with regard to
		the volume and flow of receiving waters, or
		- Where the overflow reaches land, the public exposure
		risk is likely given the maximum response time**

5	Catastrophic	The overflow is likely to drain to a local sensitive							
		environment* and:							
		- Where the overflow reaches waters, the volume of							
		sewage likely to enter the waterways is high with regard to							
		the volume and flow of receiving waters, or							
		- Where the overflow discharges to land, the public							
		exposure risk is high given the maximum response time**							

*A sensitive environment includes: a drinking water catchment or domestic groundwater source, or shellfish growing area, or protected water bodies, ecological communities or conservation areas defined by legal an non- legal instruments, such as local environment plans (LEPs), State Environmental planning policies (SEPPs), national parks, and class P or class S waters, or waterways used for primary contact recreation, or a recreational area or other area with high public exposure to associated health risk.

**Maximum response time should be based on the length of time taken for the licensee to detect the overflow, or for the overflow to be reported, and the time taken for the licensee to attend the site and secure against public contact

Likelihood	Impacts										
	Insignificant	Minor	Moderate	Major	Catastrophic						
	1	2	3	4	5						
Almost Certain – A	Low	Moderate	High	Very High	Very High						
Likely – B	Low	Moderate	High	Very High	Very High						
Possible – C	Low	Moderate	Moderate	High	Very High						
Unlikely – D	Low	Low	Moderate	High	Very High						
Rare – E	Low	Low	Low	Moderate	High						

Table 3.3. Risk Analysis Criteria

 Table 3.4.
 STP Risk Register

	Contaminant	Description of the	Public	Environ	Likelihood	Events or Circumstances	Impact	Assessed	Existing Controls
		Hazardous Event	Health	mental		that would acerbate or		Risk	In addition to operator training,
				Risks		increase likelihood			SWMS
1	Raw	Untreated sewage	Х	X	Unlikely	 Faulty IDEA aerator 	Moderate	Moderate	 Ponds have designed storage
	sewage	flows into				 Power failure 			of approximately 21 days
		maturation ponds.				 Decanting system faulty 			 Reactor has two aerators. One
									aerator can provide partial
									treatment.
									 Alarms to operator via telemetry
									and SMS
									 Reliable power supply.
2	Waste	Sludge carryover	Х	Х	Likely	• Faulty aeration system,	Insignificant	Low	Maturation ponds can
	activated	due to poor				Trade waste			capture sludge carried over.
	sludge	settlement in the				discharged into plant.			 Regular process monitoring
		IDEA reactor							by operator.
3	Effluent	Effluent overflows	Х	X	Possible	Low demand for reuse	Moderate	Moderate	 Ponds have 21 days
		to Hunter River.				water,			storage capacity.
						Faulty reuse water			 Secondary treated effluent.
						transfer pump.			 Alarms to operator via
									telemetry and SMS
									• 2 nd pump as a critical spare

									muswellbrook shire council
	Effluent	Poor quality -	Х	X	Likely	 Faulty IDEA aerator 	Minor	Moderate	 Ponds have designed storage of
		equipment failure				Power failure			approximately 21 days
						 Decanting system 			Reactor has two aerators. One
						faulty			aerator can provide partial
4	ł								treatment.
									Alarms to operator via telemetry
									and SMS
									 Reliable power supply.
	Effluent	Toxic wastes	Х	Х	Rare	Trade waste	Moderate	Low	 No trade waste sources
		upsets / kills				discharges			
5	5	process							
	Effluent	High strength	Х	X	Possible	Faulty aeration	Moderate	Moderate	 Ponds at STP have designed
		(poor quality)				system,			storage of approximately 21 days
		effluent				Trade waste			• Reactor has two aerators. One
		transferred to				discharged into			aerator can provide partial
		reuse reservoir.				plant.			treatment.
6	6								 Alarms to operator via telemetry
									and SMS.
									 Controllable application and public
									exclusion times prior to
									application.

7	′ Sludge lagoon	Supernatant	Х	Х	Rare	٠	Blocked supernatant	Minor	Low	• 7	Two sludge lagoons available.
	supernatant	from lagoons					return pipe.			E	Blocked lagoon can surcharge
		overflow into								t	o standby lagoon which will
	Sodium		Х	Х	Possible	٠	Leaking/ corroded	Moderate	Moderate	•	Controllable application and
8	Hypochlor	Leakage in					pipework				public exclusion times prior
	ite dosing	dosing system				•	Pump leak				to application.
										•	Doubled – walled dosing
											pipes
	Sodium		Х	Х	Possible	•	Cracks in tank	Moderate	Moderate	•	Tank bund part as the
9	Hypochlor	Leakage in				•	Overfilling of tank				package supplied with
	ite dosing	dosing tank				•	Leaking dosing pipe				installation
							connection to tank				

Table 3.4.	Risk Register -	Sewer Pump Stations	(DSPS#1 and DSP	S#2) and network	(continued).
------------	-----------------	----------------------------	-----------------	------------------	--------------

-		=	=	-		-	-		
	Contaminant	Description of the	Public	Environ-	Likelihood	Events or	Impact	Assessed	Existing Controls
		Hazardous Event	Health	mental		Circumstances that		Risk	In addition to operator training,
				Risks		would acerbate or			SWMS
						increase likelihood			
	DSPS#1		I		<u> </u>		I		
1	Sewage	Overflow to	Х	Х	Unlikely	Extended power	Major	High	• Reliable power system. Long
		Denman Creek				failure.			outages would be planned.
						Pump failure (pump			 Automatic stand-by pump
						well and bund wall			 Alarms to operator via telemetry
						located below 1:			and SMS
						100yr flood levels)			• Operator response less than 1
						Rising main			hour
						blockage.			Concrete bund around pump
									well.
2	Sewage	Inundation by	Х	Х	Possible	Flooding	Minor	Moderate	Concrete bund around pump
		Denman							well. (Council is planning to
		Creek							eventually relocate DSPS1
									above 1 in 100yr flood levels)
									Dilution by flood waters
3	Sewage	Dising main	V	Y	Possible	- Blockage by gross	Moderato	Moderato	- letting of mains
3	Sewaye		^	^	LOSSING		wouerale	wouerate	
		blockage				SOIIDS.			

	DPS#2								muswellbrook shire council
1	Sewage	Overflow from pump well onto roadway	X	X	Unlikely	 Extended powe failure. Pump failure 	r Minor	Low	 Reliable power system. Long outages would be planned. Automatic stand-by pump Alarms to operator via telemetry and SMS Operator response less than 1 hour Pump well overflows directly into DSPS#1 providing overflow doesn't occur in wet weather.

2	Sewage	Overflow	Х	Х	Unlikely	•	Extended power	Moderate	Low	• Reliable power system. Long
		Sandy Creek					failure.			outages would be planned.
						•	Pump failure			 Automatic stand-by pump
										Alarms to operator via telemetry
										and SMS
										• Operator response less than 1
3	Sewage	Inundation by	Х	Х	Unlikely	•	Flooding	Moderate	Moderate	Existing flood levee.
		Denman								Dilution by flood waters
		Creek								

	Gravity System								
1	Sewage	Upstream	Х	Х	Unlikely	Pipe blockage			Utilise Before You Dig Australia
		discharge				Excavation works			 Leakage can easily be
							Moder	Mod	detected.
							ate	erate	 Pumping station standby pump
									can be used.
2	Sewage	Leakage	X	X	Rare	Earthquake/ground	Moderate	Low	
						movement			
Ris	ing Mains					·	·		
1	Sewage	Pipe break	Х	Х	Rare	Earthquake/ground	Moderate	Low	Pumps can be turned off whilst
						movement			repairs are undertaken.
						Excavation works			 Storage in upstream pump
									station(s).

4 Preventative Actions to be Undertaken

4.1 General

The preventative actions or measures to manage and minimise the risk to human health and the environment involve a multiple barrier approach. The multiple barriers, in order of preference, are as follows.

- Elimination
- Substitution
- Isolation
- Engineering means
- Administrative
- Personal Protection Equipment (PPE)
 - These are readily broken down to the following classification of management strategies:
- Appropriate design of the facilities
- Appropriate operation and monitoring and
- Appropriate education and training

The identified current preventative actions are shown in this section. Photos of the existing measures are shown in Figures 4.1 - 4.6.

4.2 Collection System

Collection system overflows can principally occur from five main causes. These are:

- Power/mechanical failure at pumping stations
- Reticulation system blockage/leakage
- Rising main breakage (leaks or major failure),
- Breakdown of pump units, and
- Excessive inflows.

4.2.1 Pipelines

Overall, Denman reticulation system is in good condition, has sufficient capacity and the number of overflows or incidents per kilometer of pipeline per year is considered low by industry standards. Council uses water jetting equipment to clear blockages. Blockages in reticulation mains occur infrequently. The main cause is tree root intrusions but can also occur due to foreign objects lodging in the pipelines. Other possibilities for sewer overflows include illegal connection of storm water pipes and low-lying gullies or boundary traps.

4.2.2 Pumping Stations

The likelihood of overflows from SPSs can be minimised by the provision of the following;

- Adequate pumping capacity;
- Reliable power supply;
- Standby pumps installed in the pumping station (no portable generator);
- Service response time to address abnormal operating conditions such as power failure, pump failure is less than the detention time for the pumping station before overflow occurs;
- Implementation of effective emergency plan/operational procedures for attending to failure and breakdown within the system effectively. There is a telemetry system in place;
- Location above 1-in-100-year flood level. There is currently no record of DSPS#2 being inundated and is protected by a flood levee bank. The switchboard for both of the pump stations is located above 1-in-100-year flood level, as illustrated by Figures 4.1 and 4.2.

Figure 4.1 Pump Station DSPS#1.

Page 30 of 56

Figure 4.2 Pump station DSPS#2.

4.2.3 Pumping and storage capacity

DSPS#1 has 2 x 37kW pumps, each with a capacity of 110L/s, equivalent 6.4 times the average flow to the 2000EP capacity STP. The SPS has a dry well and emergency storage tank capacity of 220kL and the upstream mains and manholes have a storage capacity of 44.1kL. These equate to a total storage time of 4.4hrs at ADWF. The ADWF is currently 4.7L/s.

DSPS2 has 2 x 6kW pumps, each with a capacity of 35L/s, equivalent 6.4 times the average flow to the 2000EP capacity STP. The SPS has a dry well capacity of 30.31kL and the upstream mains and manholes have a storage capacity of 44.1kL. These equate to a total storage time of 11.6hrs at ADWF. The ADWF is currently 2.1L/s.

4.2.4 Reliable Power Supply

Council has reported that Denman has a reliable power supply. Generally power outages in the Denman area are not common. Power failures of extended duration are possible but are usually planned outages.

4.2.5 Provision of Emergency Storage

A sewerage system must have sufficient capacity to store sewage, which continues to flow from the catchment during extended mechanical breakdowns or electrical failures. DSPS#1 and DSPS#2 have emergency storage capacities of 4 and 11.4 hrs, respectively.

4.2.6 Telemetry System

The pumping station is connected via a telemetry system. The telemetry sends an SMS to the operator on call when high water alarm and electrical and mechanical faults occur. Alarms escalate through the telemetry, from the Operators to the Water & Wastewater Supervisor and then to the Council's Operations Manager if they are not acknowledged.

4.2.7 Response Times to Abnormal Operating Conditions

Response times are expected to be short. It is however recommended to store essential spare parts on site including spares for decanting system. Failure of the decanting system can result in significant plant down-time.

4.2.8 Stand-by Pumps

DSPS#1 and DSPS#2 are both equipped with automatic duty and standby pumps (100% standby).

4.3 Sewage Treatment Plant (STP)

Denman STP is a 2000EP capacity treatment plant. The plant is an activated sludge type plant producing secondary treated effluent consisting of the following process units:

- Inlet works with mechanical screening;
- 2000EP capacity intermittently decanted extended aeration (IDEA) biological reactor;
- Maturation/polishing ponds; and
- Chlorine dosing on the re-use main to the golf course.

The Denman STP is a simple plant, which is likely to be upgraded in the near future. It is underloaded based on the current connected population.

At present all flows are pumped via SPS#1 to the inlet works. All flows to the plant are treated by the IDEA reactor. IDEA reactors generally allow for at least partial treatment for flows between DDWF and PWWF.

Equipment failure that may occur at the STP includes:

- Mechanical aerator reduced aeration capacity will result in reduced treatment capability. The IDEA reactor has two (2) surface aerators. Failure of one aerator will reduce the biological treatment capacity of the IDEA reactors.
- Failure of the decanting weir's rubber membrane ("sock"). Failure of the membrane will result in significant reactor down-time. This may be mitigated by storing spare membranes on site.

• Reuse transfer pump failure. Failure of the reuse pump will result in the possibility of overflow from the maturation pond into Hunter River, instead of being reused. The maturation ponds have a designed 30-day storage capacity.

The Denman STP has a SCADA system and a telemetry system that provides a monitoring options during out of business hours. On-call operators monitor the plant during this time. Telemetry system provides Alarms triggered by the SCADA system and the alert in the form of an automatic phone message is sent to on-call operator. Operator responds to the alarm by attending the STP.

The process units of the STP are illustrated by Figures 4.3 – 4.6. **Figure 4.3.** Raw Sewage Inlet Channel.

Page 33 of 56

Figure 4.4. IDEA Biological Reactor.

Figure 4.5 Maturation Ponds (reuse transfer pump in foreground)

Figure 4.6. Sludge Lagoons

4.3.1 Dry Weather

Generally, unless exceptional circumstances such as malfunction of systems due to mechanical/ electrical failure or blockages occur, overflows at the STP in dry weather flow conditions are extremely unlikely.

4.3.2 Wet Weather

The STP is designed to treat all inflows. Generally, unless exceptional circumstances such as malfunction of system due to mechanical/electrical failure or blockages occur, overflows at STP are unlikely.

4.4 Sewage Treatment Plant Chemical Spills

Liquid Chlorine (Sodium Hypochlorite) is dosed at Denman STP into re-use main to the golf course for disinfection. A maximum of 2000 liters is stored in 5000 liters capacity tank that is located in bunded area inside the chemical dosing room.

5 Inventory of Pollutants

5.1 Inventory of Stored Chemicals

Chemical	Amount onsite, L	Maximum tank capacity, L
Sodium Hypochlorite	2000 max	5000

5.2 Chemical Usage

Sodium Hypochlorite dosed at an average of 24L/day and 720L/month.

5.3 Other Pollutants – Sewage and Effluent

The other potential pollutants are:

- Sewage (within the collection system and at head of the STP). All raw sewage is processed by the IDEA biological reactor.
- Effluent produced at the STP. 100% of the treated effluent is reused by the golfcourse.
- Sludge produced at the STP. Waste activated sludge is initially transferred to the sludge lagoon for stabilisation. It is then removed to the drying bed. Once it is dry, it is disposed of by contractor.
- Sludge lagoon supernatant returned to the inlet works for treatment by the IDEA reactor.
- Grit and screenings (inlet works) Collected and disposed of at Council's landfill site.

Parameter	Typical Raw Sewage	Effluent
Biochemical oxygen demand (BOD ₅), mg/l	270	<20
Suspended solids (SS), mg/l	270	<30
Total nitrogen (TN), mg/l	53	<20
Ammonia, mg/l	53	<10
Total phosphorus (TP), mg/l	11	<11
Oil and grease (O&G), mg/l	<10	<2
Fecal coliforms, CFU/100ml	1,000,000	<1000
рН	6.5 - 8.5	6.5 - 8.5

Table 5.2. Pollutant List – Sewage and Effluent

Table 5.3 Maximum amount of pollutants in respective parts of the plant.

Pollutant	Storage
IDEA Reactor, kL	563
Maturation Pond Effluent, kL	4000
Sludge Lagoon, t in dry weight	147
Golf Course Reservoir, kL	900
Effluent Dam, kL	30000

Figure 5.1 Denman re-use system.

Page 37 of 56

6 Safety Equipment

Safety equipment or other devices that are onsite will minimise the risks to human health or the environment and contain or control a pollution incident. These will include any personal protective equipment (PPE), material safety data sheets (MSDS), monitoring devices and spill containment equipment.

6.1 List of PPE Equipment Onsite

The following PPE safety equipment is provided onsite:

Table 6.1. List of PPE

Personal Protective Equipment	Location
Hearing protection	STP and Operator's Truck
Protective gloves	STP and Operator's Truck
Dust mask	STP and Operator's Truck
Safety glasses	STP and Operator's Truck
Self – contained breathing apparatus (SCBA)	Denman WTP
Safety apron	STP and Operator's Truck

6.2 List of Monitoring Devices

The sewerage system is monitored via a SCADA and telemetry systems. Alarms are automatically sent to operators via SMS.

Figure 6.1 Overview of Denman Sewer Treatment

OVERVIEW DENMAN SEWER TREATMENT

Page **38** of **56**

The list of monitoring devices onsite is shown in Table 6.2.

System	Monitoring Devices	Devices Alert	
STP	SCADA and telemetry system	Escalates from "On-call Operator" to	
	monitors:	"Supervisor - Treatment Plants" and finally	
	Power, Intrusion, Aerators &	to "Operations Manager", if not	
	Sludge pump	acknowledged.	
SPS	High Level alarm	As above	
	Power failure	As above	
	Pump Mechanical Failure	As above	
	Intrusion Alarm	As above, only after hours.	

Table 6.3. List of monitoring devices

Site	Device	Manufacturer/Model	Function
DSPS#2	Pressure Transmitter	Aquamonix / PS7000	Level Indication and Pump
			Control
	Float Switch	Flyght/ ENM10	Well level critical alarm &
			emergency pump start
	Remote Telemetry Unit	Serch Controls/	Communicate status to
		PDS500	SCADA and control pumps
DSPS#1	Pressure Transmitter	Vega/Well52	Level indication (including
			alarm) and pump control
	Float Switch	Flyght/ ENM10	Well level critical alarm &
			emergency pump start
	Remote Telemetry Unit	Serch Controls/	Communicate status to
		PDS500	SCADA and control pumps
	Inflow Flowmeter (FTx)	Endress and	Record & display influent to
		Hauser/Promag400	plant (KI total indicated on
		5w4c2h-20W6/0	SCADA)
	Let Screen Level (FTx)	Miltronics/The Probe	Monitor level to control Inlet
		8616030	Screen

High Level Float	Flyght/ENM10	Change E.A.T. cycle to
Switch		Storm Duty and give Alarm
		to SCADA
Remote Telemetry Unit	Serck	Communicate plant status
	Controls/PDS550	and alarms to SCADA
Effluent Lagoon Level	Endress and Hauser/	Indication of level to SCADA
(LTx)	Prosonic M FMU40	and control reuse pump
SCADA	Ci Technologies /	Communicate status to
	Citect Version 7.2	SCADA and control pump
Alarm Dialler	Schneider /	Advise relevant contact in
	ScadaPhone	event of alarm as per alarm
		list – if call not acknowledge
		by On-Call Operator
		ScadaPhone will call Senior
		Operator, then Supervisor
		and then Operations
		Manager

Table 6.4. SCADA alarms list

Site	Alarm	Cause
Denman Effluent Reuse Pumping	Mains Fail Alarm	Loss of 3 phase power
Station		supply
Denman Effluent Reuse Pumping	Battery Volts Low	RTU12V backup battery
Station		below 11 volts
Denman Effluent Reuse Pumping	Intrusion Alarm	Site Accessed
Station		
Denman Effluent Reuse Pumping	Sensor Fault	Level Transmitter not
Station Level		working
Denman Effluent Reuse Pumping	Maximum Starts	Pump cycle un-naturally
Station Pump	Alarm	short
Denman Effluent Reuse Pumping	Fault	Motor protection or Hypo
Station Pump		dosing pump trip

Telemetry Mains Fail	RTU running on battery
Isagraf Program	RTU program not running
Halted	
Backup Battery Fault	RTU CPU battery failed
Hardware Fault	RTU internal error
Mains Fail Alarm	Loss of 3 phase power
	supply
Battery Volts Low	RTU12V backup battery
	below 11 volts
Intrusion Alarm	Site Accessed
Maximum Starts	Pump cycle un-naturally
Alarm	short
Fault	Motor Protection Trip
Maximum Starts	Pump cycle un-naturally
Alarm	short
Fault	Motor Protection Trip
Telemetry Mains Fail	RTU running on battery
Level High	Wet Well at Critical Level
Isagraf Program	RTU program not running
Halted	
Backup Battery Fault	RTU CPU battery failed
Hardware Fault	RTU internal error
	Telemetry Mains Fail Isagraf Program Halted Backup Battery Fault Hardware Fault Mains Fail Alarm Battery Volts Low Intrusion Alarm Maximum Starts Alarm Fault Maximum Starts Alarm Fault Telemetry Mains Fail Level High Isagraf Program Halted Backup Battery Fault

Denman Sewerage Pumping	Mains Fail Alarm	Loss of 3 phase power
Station 2		supply
Denman Sewerage Pumping	Battery Volts Low	RTU12V backup battery
Station 2		below 11 volts
Denman Sewerage Pumping	Intrusion Alarm	Site Accessed
Station 2		
Denman Sewerage Pumping	Maximum Starts	Pump cycle un-naturally
Station 2 Pump 1	Alarm	short
Denman Sewerage Pumping	Fault	Motor Protection Trip
Station 2 Pump 1		
Denman Sewerage Pumping	Maximum Starts	Pump cycle un-naturally
Station 2 Pump 2	Alarm	short
Denman Sewerage Pumping	Fault	Motor Protection Trip
Station 2 Pump 2		
Denman Sewerage Pumping	Telemetry Mains Fail	RTU running on battery
Station 2		
Denman Sewerage Pumping	Level High	Wet Well at Critical Level
Station 2 Wet Well		
Denman Sewerage Pumping	Isagraf Program	RTU program not running
Station 2 RTU	Halted	
Denman Sewerage Pumping	Backup Battery Fault	RTU CPU battery failed
Station 2 RTU		
Denman Sewerage Pumping	Hardware Fault	RTU internal error
Station 2 RTU		
Denman Sewerage Treatment Plant	Mains Fail Alarm	Loss of 3 phase power
		supply
Denman Sewerage Treatment Plant	Fault	Motor Protection Trip
Aerator 1		
Denman Sewerage Treatment Plant	Fault	Motor Protection Trip
Aerator 2		
Denman Sewerage Treatment Plant	Flood	E.A.T. Storm Cycle Level
Basin		Active

Denman Sewerage Treatment Plant	Battery Volts Low	RTU12V backup battery
		below 11 volts
Denman Sewerage Treatment Plant	Fault	Motor Protection Trip
Decanter		
Denman Sewerage Treatment Plant	Intrusion Alarm	RTU Panel Accessed
Denman Sewerage Treatment Plant	Telemetry Mains Fail	RTU running on battery
Denman Sewerage Treatment Plant	Fault	Motor Protection Trip
Inlet Screen		
Denman Sewerage Treatment Plant	Maximum Starts	Pump cycle un-naturally
Sludge Pump	Alarm	short
Denman Sewerage Treatment Plant	Fault	Motor Protection Trip
Sludge Pump		
Denman Sewerage Treatment Plant	Isagraf Program	RTU program not running
RTU	Halted	
Denman Sewerage Treatment Plant	Backup Battery Fault	RTU CPU battery failed
RTU		
Denman Sewerage Treatment Plant	Hardware Fault	RTU internal error
RTU		

Method for volume estimation to be used if monitoring equipment fails

- 1. Use historical data on average daily dry weather wastewater inflow and effluent outflow.
- 2. In addition, with regard to pumping of wastewater and effluent the following details for all pumps are known (from SCADA trends):
 - Instantaneous flow (L/S) for both wastewater and effluent pumps
 - Sewage (Wastewater) Inflow from pump station per pump run
 - Pumps run time data from pumps
 - Number of starts of pumps per day or per hour.

Both inflow and outflow can be estimated using above information.

7 Roles, Responsibilities and Contact Details

7.1 Stakeholder Responsibilities and Engagement

Council has committed to operating its Wastewater Treatment Plants and collection system in a responsible manner. Effective stakeholder engagement is necessary to fulfil this commitment. Table 7.1 presents the list of stakeholders involved in the operation of the Denman STP and collection system, outlines their roles and communication expected to occur to achieve safe operation of the plant and collection system. Further information on the operation of the system and communication protocols is addressed later in this plan.

Stakeholder	Responsibility	
Muswellbrook Shire Council	Provision of safe and reliable water and sewerage services	
(MSC)	for Muswellbrook Local Government area	
Director	Reports to MSC General Manager on:	
Property and Place	Water & Sewerage Works & Facilities	
	Roads & Stormwater Drainage Facilities	
	Sporting & Recreation Services & Facilities	
	Waste Removal	
	Treatment & Disposal Services	
	Technical Services	
	In conjunction with Manager Water and Wastewater	
	assesses risk to public safety should an incident posing	
	health risk occur.	
Manager	Reports to Director Property and Place	
Water and Wastewater	Provides leadership and overall management of water and	
	wastewater services for Muswellbrook Shire, with strategic and	
	asset management focus to ensure water and wastewater	
	services are planned and managed to a best practice standard	
	to achieve the strategic objectives of Council and the community.	

Table 7.1. Stakeholder Responsibilities and Engagement

Asset Manager	Reports to Manager Water and Wastewater	
Water and Wastewater	Responsible for:	
	 asset renewal projects; 	
	capital projects;	
	Water and Sewer assessments;	
	Asset Management	
Operations Manager	Reports to Manager Water and Wastewater	
Water and Wastewater	Responsible for:	
	 management and supervision of Operations area 	
	maintenance of water and wastewater services	
Supervisor – Treatment	Reports to Operations Manager Water and Wastewater	
Plant	Responsible for:	
	daily operation of STP	
	 routine maintenance of STP 	
	 data collection and reporting 	
	 supervision of operators and trainees on daily basis 	
Operators Water and	Reports to Water & Wastewater Supervisor	
Wastewater	Responsible for:	
	 routine tasks at STP 	
	Collection of relevant data	
	Daily control of the plant	
	 On-call duties according to the roster 	
NSW Health	Promote, protect and maintain the health of residents of	
	Muswellbrook LGA.	
NSW EPA	The NSW Environment Protection Authority (EPA) is the	
	primary environmental regulator for New South Wales. EPA	
	roles include protecting, restoring and enhancing the quality of	
	the environment in NSW and reducing risk to human health.	

NSW Department of	•	Provide advice and assistance to Council with process	
Climate Change, Energy,		treatment issues	
the Environment and Water	•	Monitor compliance with legislation and regulation	
(DCCEEW)	•	Conduct plant inspections	
	•	Provide assistance and technical support for the Water and	
		Sewer Projects	
SafeWork NSW	•	Provide advice, information and education on WHS	
	•	Provide licensing and registration for potentially dangerous	
		work and plant items	
	•	Provide testing services for chemicals used in workplaces,	
		and electrical and mechanical equipment used in hazardous	
		areas.	
Community of	•	Advice where required during incidents such as odorous	
Muswellbrook		releases, pipeline and SPS overflows	
NSW Police / Fire & Rescue	•	Provide response to incidents and emergencies (i.e. spills,	
NSW (inc HAZMAT) /		injuries and accidents).	

7.2 List of Contact Details

The contact details of the stakeholders are listed below in Table 7.2.

Table 7.2.	Stakeholder	Contact Details

Organisation	Position / Key Personnel	Contact Details
	24 Hour emergency number	02 6549 3700
	Council during business hours	02 6549 3700
	Derek Finnigan	02 6549 3700
	General Manager	Derek.Finnigan@muswellbrook.nsw.gov.au
Muswellbrook	Matthew Lysaught	02 6549 3730
Shire	Director Property and Place	matthew.lysaught@muswellbrook.nsw.gov.au
Council	Sergei lagunkov	02 6549 3774
	Manager Water and	sergei.iagunkov@muswellbrook.nsw.gov.au
	Wastewater	
	Operations Manager	Vacant

	Mark Donnelly	0490 859 584		
	Supervisor – Treatment	mark.donnelly@muswellbrook.nsw.gov.au		
	Relevant Authority Contacts			
NSW EPA	EPA Environment Line	131 555		
		info@environment.nsw.gov.au		
NSW Health	Hunter New England District –	1300 066 055		
	Public Health Unit	(02) 4924 5704 (After Hours)		
NSW	Graham Campbell	0419 620 990		
DCCEEW		graham.campbell@dpie.nsw.gov.au		
Safework		13 10 50		
NSW		contact@safework.nsw.gov.au		
Emergency	Police, Fire Brigade,	000		
Services	Ambulance, Hazmat			

7.3 Council Procedures for Contacting Staff to Respond to a Possible Incident

All SPS and STP telemetry alarms are transmitted by SMS phone message to the On-Call Operator to respond. If alarm is not acknowledged it escalated to the Supervisor – Treatment Plant and then, if required, escalated to the Operations Manager.

The Operator will attend to an alarm/possible incident and report to the Supervisor -Treatment Plants. If required, Supervisor to notify Operations Manager.

Any blockages reported within the sewage system are attended to by the Operators Networks and cleared with Jet Cleaner. All works are undertaken to comply with the relevant Safe Work Method Statements (SWMS) and appropriate service requests are to be completed.

8 Communicating with Neighbours and the Community

To determine the appropriate communication strategy for an incident the incident needs to be categorised. Once categorised the prescribed communication strategy can be deployed.

8.1 Pollution Incident Management.

8.1.1 Sewerage Incident Notification Protocol

Pollution incidents are currently managed via Council's "Sewer Incident Notification Protocol" and a "Sewer Spills or Overflows" checklist which are in place for its sewage transport and treatment systems at Muswellbrook and Denman townships. The protocol and checklist are attached as Appendix A.

The object of the protocol is to ensure that all relevant organisations and members of any affected communities are notified of overflows and sewage treatment bypasses. It is important to note that the notification protocol does not allow for members of the community to be notified of every bypass and/or overflow event. Community members will only be notified if the incident is considered to be "significant risk to public health". The risk to public health will be determined following consultation with NSW Health representative by Council's Water and Wastewater Manager.

The triggers for notification are:

- Discharge from the STP of raw sewage or partially treated effluent from the STP which may pose as a public health risk; or
- An observed or reported overflow from the reticulation system, SPS or STP which may pose as a public health risk.

8.1.2 Significant Public Health Risk Events

Examples of events that are considered to be of "significant risk to public health" when an overflow or bypass has occurred:

- in a public park or sporting field where significant usage for recreational activities is being undertaken;
- inside the grounds of or in close proximity to a school or a child care centre; and/or
- at the treatment plant where disinfection has been compromised or bypass of the secondary treatment process has occurred with subsequent discharge of untreated/partially treated wastewater to receiving waters.

If a public health risk is assessed, Council will:

- initiate a water quality sampling and testing program to be undertaken by qualified and independent personnel to monitor and manage any public health threat related to the event; and
- erect signs and barricades as required.

8.1.3 Information to be collected

Information to be collected in the event of an overflow or bypass from the reticulation system, at a sewage pumping station or a sewage treatment plant will include but not be limited to:

- The location of the overflow/bypass and a description of the receiving environment;
- Date, estimated start time and duration of event;
- Volume of overflow/bypass;
- Classification of overflow/bypass due to dry (eg. power and mechanical equipment failure) and/or wet (ie. due to heavy rainfall) weather;
- Probable cause of the overflow/bypass;
- Actions taken to stop overflow/bypass from occurring;
- Clean up activities undertaken; and
- Mitigating actions to prevent overflow/bypass from recurring.

8.1.4 Event Notification

Information provided to the Community will generally be sufficient to reduce public health risks to an acceptable level.

The need and extent of notification of overflows/bypasses will be assessed on a case by case basis as follows:

 Council's Director Property and Place and Manager Water and Wastewater will liaise with NSW Health's representative to determine which sections of the Community have the potential to be affected and how they will be notified.

Event notification will consist of:

- Ringing NSW EPA's Pollution Line of 131555.
- Immediate notification of Council being aware of the overflow/bypass incident and provision (by fax or email) of completed "Record of Sewer Overflow" report within a week after the incident to the following bodies:

• NSW Health;

muswellbrook shire council

- NSW EPA;
- DCCEEW;
- Council's Corporate and Community Services Section and
- Council's Environmental Services Section.

Contact details are provided in the "Sewer Incident Notification Protocol" document in Appendix A.

8.2 Investigation of Incidents and Emergencies

Following any incident or emergency situation, including any "near misses", an investigation will be undertaken, and all involved staff should be debriefed, to discuss performance and address any issues or concerns. Investigation will consider factors such as:

- What was the initiating cause of the problem?
- How was the problem first identified or recognised?
- What were the most critical actions required?
- What communication problems arose and how were they addressed?
- What were the immediate and longer-term consequences?
- How well did the protocol function?

An incident reporting form for Denman is attached as Appendix C.

9 Minimising Harm to Persons on the Premises

9.1 Attendance Register

An attendance register is in place at the STP. All visitors are signed in and out of the site.

9.2 Site Induction

Visitors are instructed to report to the site office where they are inducted to the site by the Operator Water and Wastewater prior to access to treatment areas of the site.

9.3 Evacuation Procedure

The evacuation procedure is depicted on a plan displayed in the amenities building/site office.

9.4 Emergency Assembly Point

The emergency assembly point is at the front gate near the entrance to the STP.

Page 50 of 56

10 Actions to be undertaken during or immediately after a pollution incident

10.1 Minor Incident Action Plan

The action plan for the following minor incidents is shown in Figure 10.1.

Figure 10.1. Minor Incident Action Plan

The action plan for the following moderate incidents is shown in Figure 10.2.

Figure 10.2. Moderate Incident Action Plan

10.3 Major Incident Action Plan

The action plan for the following significant incidents is shown in Figure 10.3.

Figure 10.3. Major Incident Action Plan

11 Evaluation, Audit and Review for Continuous Development

11.1 Evaluation and Review

A systematic review of the plan will be undertaken by the Operations Manager annually or within one month of an incident occurring at the plant. The evaluation will:

- Assess the relevance of the risk assessment against the current state of the plant
- Identify any emerging problems and trends
- Assess the communication between Council, Council operational staff and regulators
- Assist in determining priorities for improving procedures
- Assess incidents and responses determined
- Determine when and what is to be audited in the next six months

Evaluation of results described above will be documented and the plan updated. Evaluation will be reported to the Council stakeholders.

11.2 Auditing

Auditing of the pollutant inventory is to be done annually. An audit may also be triggered by a significant incident or if the process chemical is changed.

12 References

- 1. Protection of the Environment Operations Act (POEO Act), 1997
- 2. Protection of the Environment Operations (General) Regulation, 2022
- 3. Water Management Act, 2000
- 4. Local Government Act, 1993
- 5. Work Health and Safety Act 2011
- 6. The Guideline: Pollution Incident Response Management Plans (PIRMP Guidelines)
- 7. NSW EPA, Environment Protection Licence (EPL) No. 5059.

13 Appendix – Denman Staff Record/Register of Training

Staff training includes:

- Annual review and test of PIRMP
- Original Records/register of training is available from Water & Waste Administrator
- Documentation and review of PIRMP is recorded and saved in Council document register system.

Table 13.1 Staff register – Annual PIRMP Drill te	st.
---	-----

Date	Name	Position
26/02/2025	Mark Donnelly	Supervisor – Treatment Plants
26/02/2025	Karlee Boyle	WHS Advisor
26/02/2025	Mark Winning	Water and Wastewater Administration Officer
26/02/2025	William Randall	Works Operator – Networks